分析 换元,利用基本不等式,即可证明结论.
解答 证明:记x=a-1,y=b-1,那么题目变成x>0,y>0,求证$\frac{(x+1)^{2}}{y}$+$\frac{(y+1)^{2}}{x}$≥8,
即(x+1)2x+(y+1)2y≥8xy,
即x3+2x2+x+y3+2y2+y≥8xy.
因为2x2+2y2≥4xy,x3+x≥2x2,y3+y≥2y2,
所以x3+2x2+x+y3+2y2+y≥2x2+2y2+4xy≥8xy,
所以$\frac{{a}^{2}}{b-1}$+$\frac{{b}^{2}}{a-1}$≥8.
点评 本题考查不等式的证明,考查基本不等式的运用,正确变形是关键.
科目:高中数学 来源: 题型:选择题
| A. | 2016f(2015)>2015f(2016) | B. | 2014f(2014)>2015f(2015) | ||
| C. | 2015f(2016)>2016f(2015) | D. | 2015f(2015)>2014f(2014) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com