【题目】设函数
,
,
,其中
是
的导函数.
(1)若
恒成立,求实数
的取值范围;
(2)设
,比较
与
的大小,并说明理由.
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
0,若过 A,Q,F2三点的圆恰好与直线
相切,过定点 M(0,2)的直线
与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线
的斜率
,在x轴上是否存在点P(
,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出
的取值范围;如果不存在,请说明理由;(Ⅲ)若实数
满足
,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
已知曲线C
:
(t为参数), C
:
(
为参数)。
(1)化C
,C
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C
上的点P对应的参数为
,Q为C
上的动点,求
中点
到直线
(t为参数)距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的方程为
,以极点为原点,极轴所在直线为
轴建立直角坐标,直线
的参数方程为
(
为参数),
与
交于
,
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)设点
;若
、
、
成等比数列,求
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为
,且各个时间段每套系统监测出排放超标情况相互独立.
(1)当
时,求某个时间段需要检查污染源处理系统的概率;
(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出
人,并将这
人按年龄分组:第1组
,第2组
,第3组
,第4 组
,第5组
,得到的频率分布直方图如图所示
![]()
(1) 求
的值
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取
人,再从这
人中随机抽取
人进行问卷调查,求在第1组已被抽到
人的前提下,第3组被抽到
人的概率;
(3)若从所有参与调查的人中任意选出
人,记关注“生态文明”的人数为
,求
的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为
(t为参数),曲线C的极坐标方程为ρ=4sin(θ+
).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品中分正品与次品,正品重100克,次品重110 克.现有5袋产品(每袋装有10个产品),已知其中有且只有一袋次品(10个产品均为次品),如果将5袋产品以1-5编号,第
袋取出
个产品(
=1,2,3,4,5),并将取出的产品一起用秤(可以称出物体重量的工具)称出其重量
,若次品所在的袋子的编号是2,此时的重量
=__________克;若次品所在袋子的编号是
,此时的重量
=_________克.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com