精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx(a≠0,x∈R)为奇函数,且f(x)在x=1处取得极大值2.
(1)求函数y=f(x)的解析式;
(2)记g(x)=
f(x)x
+(k+1)lnx
,求函数y=g(x)的单调区间.
分析:(1)根据函数为奇函数求出b,然后根据函数f(x)在x=1取得极大值2,建立a与c的方程组,解之即可求出函数y=f(x)的解析式;
(2)先求函数的定义域,讨论k与-1的大小,然后利用导数的符号确定函数的单调性即可.
解答:解:(1)由f(x)=ax3+bx2+cx(a≠0)为奇函数,
∴f(-x)=-f(x),代入得,b=0
∴f′(x)=3ax2+c,且f(x)在x=1取得极大值2.
f′(1)=0
f(1)=2
?
3a+c=0
a+c=2.

解得a=-1,c=3,∴f(x)=-x3+3x
(2)∵g(x)=-x2+3+(k+1)lnx,
g′(x)=-2x+(k+1)
1
x
=
-2x2+(k+1)
x

因为函数定义域为(0,+∞),所以
①当k=-1时,g'(x)=-2x<0,
函数在(0,+∞)上单调递减;
②当k<-1时,k+1<0,∵x>0,
g′(x)=
-2x2+(k+1)
x
<0

∴函数在(0,+∞)上单调递减;
③k>-1时,k+1>0,令g'(x)>0,得
-2x2+(k+1)
x
>0

∵x>0,
∴-2x2+(k+1)>0,得-
k+1
2
<x<
k+1
2

结合x>0,得0<x<
k+1
2

令g'(x)<0,得
-2x2+(k+1)
x
<0
,同上得2x2>(k+1),x>
k+1
2

∴k>-1时,单调递增区间为(0,
k+1
2
),
单调递减区间为(
k+1
2
,+∞)
综上,当k≤-1时,函数的单调递减区间为(0,+∞),无单调递增区间;
当k>-1时,函数的单调递增区间为(0,
k+1
2
),
单调递减区间为(
k+1
2
,+∞)
点评:本题主要考查了函数解析式的求解,以及利用导数研究函数的单调性,考查了分类讨论的数学思想,是高考中常考的题型,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案