精英家教网 > 高中数学 > 题目详情
11.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若∠AEB为锐角,则该双曲线的离心率e的取值范围是(1,2).

分析 根据双曲线的对称性,得到等腰△ABE中,∠AEB为锐角,可得|AF|<|EF|,将此式转化为关于a、c的不等式,化简整理即可得到该双曲线的离心率e的取值范围.

解答 解:根据双曲线的对称性,
△ABE中,|AE|=|BE|,
∴△ABE是锐角三角形,即∠AEB为锐角,
由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|,
令x=-c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
即有|AF|=$\frac{{b}^{2}}{a}$=$\frac{{c}^{2}-{a}^{2}}{a}$,|EF|=a+c,
∴$\frac{{c}^{2}-{a}^{2}}{a}$<a+c,即2a2+ac-c2>0,
两边都除以a2,得e2-e-2<0,解之得-1<e<2,
∵双曲线的离心率e>1
∴该双曲线的离心率e的取值范围是(1,2).
故答案为:(1,2).

点评 本题给出双曲线过一个焦点的通径与另一个顶点构成锐角三角形,求双曲线离心率的范围,着重考查了双曲线的标准方程与简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.画出下列不等式组所表示的平面区域.
(1)$\left\{\begin{array}{l}{x-2y≤3}\\{x+y≤3}\\{x≥0}\\{y≥0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y<2}\\{2x+y≥1}\\{x+y<2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}+x,x≤0}\\{-1+lnx,x>0}\end{array}\right.$ 的零点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{2}^{2}}$=1(a>0)的左、右焦点,P为双曲线上的一点,若∠F1PF1=60°,则△F1PF2的面积是(  )
A.$\frac{4\sqrt{3}}{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是$\sqrt{3}$,则双曲线C的方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线与抛物线y=x2+2只有一个公共点,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是(  )
A.3x2-y2=1B.$\frac{x^2}{3}-{y^2}$=1C.x2-3y2=1D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一点M为圆心的圆与x轴恰相切于双曲线的一个焦点F,且与y轴交于P、Q两点.若△MPQ为锐角三角形,则该双曲线的离心率e的范围是(  )
A.$(\frac{{\sqrt{6}+\sqrt{2}}}{2},+∞)$B.($\frac{\sqrt{5}+1}{2}$,$\frac{\sqrt{6}+\sqrt{2}}{2}$)C.$(\sqrt{6}+\sqrt{2},+∞)$D.$(1,\sqrt{6}+\sqrt{2})$

查看答案和解析>>

同步练习册答案