精英家教网 > 高中数学 > 题目详情
9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域,
则(x+1)2+(y+1)2的几何意义是区域内的点到定点D(-1,-1)的距离的平方,
由图象知OA的距离最小,OB的距离最大,
由$\left\{\begin{array}{l}{2x+y-5=0}\\{3x-y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),此时(x+1)2+(y+1)2=32+22=9+4=13,
$\left\{\begin{array}{l}{3x-y-5=0}\\{x-2y+5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即B(3,4),此时(x+1)2+(y+1)2=42+52=16+25=41,
即(x+1)2+(y+1)2的最大值是41,最小值是13.

点评 本题主要考查线性规划的应用结合两点间的距离关系,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C所对的边分别为a,b,c,已知1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$.
(I)求A;
(Ⅱ)若BC边上的中线AM=2$\sqrt{2}$,高线AH=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f1(x)=x2,f2(x)=$\frac{3}{x+1}$,f3(x)=sinπx,xi=$\frac{i}{9}$(i=0,1,2,…,9),记Ik=$\sum_{i=1}^{9}$|fk(xi)-fk(xi-1)|,则(  )
A.I1<I2<I3B.I2<I1<I3C.I3<I2<I1D.I1<I3<I2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$,则2x-y的最大值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.两圆x2+y2-x+y-2=0和x2+y2=5的公共弦长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为(  )
A.$\frac{x^2}{18}-\frac{y^2}{8}=1$B.$\frac{x^2}{36}-\frac{y^2}{16}=1$C.$\frac{x^2}{8}-\frac{y^2}{18}=1$D.$\frac{x^2}{16}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若∠AEB为锐角,则该双曲线的离心率e的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设△ABC是等腰三角形,∠ABC=90°,则以A,B为焦点且过点C的双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知M(x0,y0)是曲线C:$\frac{{x}^{2}}{2}$-y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若$\overrightarrow{MF}$$•\overrightarrow{MN}$<0,则x0的取值范围是(  )
A.(-1,0)∪(0,1)B.(-1,0)C.(0,1)D.(-1,1)

查看答案和解析>>

同步练习册答案