精英家教网 > 高中数学 > 题目详情
8.设△ABC是等腰三角形,∠ABC=90°,则以A,B为焦点且过点C的双曲线的离心率为1+$\sqrt{2}$.

分析 设|AB|=2c,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,可求得该双曲线的实轴长2a=|CA|-|CB|的值,从而可求得其离心率.

解答 解:设|AB|=2c,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,
∵△ABC为等腰直角三角形,
∴|CA|=$\sqrt{2}$•(2c)=2$\sqrt{2}$c,|CB|=2c,
∴由双曲线的定义可得,
该双曲线的实轴长2a=|CA|-|CB|=(2$\sqrt{2}$-2)c,
∴双曲线的离心率e=$\frac{2c}{2a}$=$\frac{2c}{(2\sqrt{2}-2)c}$=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1.
故答案为:1+$\sqrt{2}$.

点评 本题考查双曲线的简单性质,建立适当的坐标系,得到实轴长与焦距是关键,考查分析问题解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{-1,x<-1}\\{x,-1≤x<1}\\{1,x≥1}\end{array}\right.$
(1)求f(x)的定义域;
(2)作出函数f(x)的图象;
(3)根据图象判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\left\{\begin{array}{l}{2x+y-5≥0}\\{3x-y-5≤0}\\{x-2y+5≥0}\end{array}\right.$,求(x+1)2+(y+1)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是$\sqrt{3}$,则双曲线C的方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线与抛物线y=x2+2只有一个公共点,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}=0$,则双曲线C的离心率为$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.离心率为2的双曲线E的一个焦点到一条渐近线的距离为1,则E的标准方程可以是(  )
A.3x2-y2=1B.$\frac{x^2}{3}-{y^2}$=1C.x2-3y2=1D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.
(1)求证:数列{bn}是等比数列,并求出其通项bn
(2)若数列{Cn}满足Cn=$\frac{1}{lo{g}_{2}{b}_{n}}$且数列{C${\;}_{n}^{2}$}的前n项和为Tn,证明Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,双曲线两渐近线分别为l1,l2,过点F作直线l1的垂线,分别交l1,l2于A,B两点,若A,B两点均在x轴上方且|OA|=3,|OB|=5,则双曲线的离心率e为(  )
A.$\frac{\sqrt{5}}{2}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案