分析 设出A,F的坐标,运用向量的数量积的坐标表示,结合a,bc的关系和离心率公式,计算即可得到所求值.
解答 解:由题意可得A(-a,0),F(c,0),B(0,b),
可得$\overrightarrow{BA}$=(-a,-b),$\overrightarrow{BF}$=(c,-b),
由$\overrightarrow{BA}•\overrightarrow{BF}=0$,可得-ac+b2=0,
即有b2=c2-a2=ac,
由e=$\frac{c}{a}$,可得e2-e-1=0,
解得e=$\frac{1+\sqrt{5}}{2}$(负的舍去).
故答案为:$\frac{{\sqrt{5}+1}}{2}$.
点评 本题考查双曲线的离心率的求法,注意运用向量的数量积的坐标表示,考查双曲线的渐近线方程和离心率公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{18}-\frac{y^2}{8}=1$ | B. | $\frac{x^2}{36}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{8}-\frac{y^2}{18}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{36}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com