精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=2px的准线方程为x=-1焦点为F,A,B,C为该抛物线上不同的三点,$\overrightarrow{\left|{FA}\right|},\overrightarrow{\left|{FB}\right|},\overrightarrow{\left|{FC}\right|}$成等差数列,且点B在x轴下方,若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,则直线AC的方程为2x-y-1=0.

分析 根据抛物线的准线方程求出p,设A,B,C的坐标,根据$\overrightarrow{\left|{FA}\right|},\overrightarrow{\left|{FB}\right|},\overrightarrow{\left|{FC}\right|}$成等差数列,且点B在x轴下方,若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,求出x1+x3=2,x2=1,然后求出直线AC的斜率和A,C的中点坐标,进行求解即可.

解答 解:抛物线的准线方程是x=-$\frac{p}{2}$=-1,∴p=2,
即抛物线方程为y2=4x,F(1,0)
设A(x1,y1),B(x2,y2),C(x3,y3),
∵|$\overrightarrow{FA}$|,|$\overrightarrow{FB}$|,|$\overrightarrow{FC}$|成等差数列,
∴|$\overrightarrow{FA}$|+|$\overrightarrow{FC}$|=2|$\overrightarrow{FB}$|,
即x1+1+x3+12(x2+1),
即x1+x3=2x2
∵$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,
∴(x1-1+x2-1+x3-1,y1+y2+y3)=0,
∴x1+x2+x3=3,y1+y2+y3=0,
则x1+x3=2,x2=1,
由y22=4x2=4,则y2=-2或2(舍),
则y1+y3=2,
则AC的中点坐标为($\frac{{x}_{1}+{x}_{3}}{2}$,$\frac{{y}_{1}+{y}_{3}}{2}$),即(1,1),
AC的斜率k=$\frac{{y}_{1}-{y}_{3}}{{x}_{1}-{x}_{3}}$=$\frac{{y}_{1}-{y}_{3}}{\frac{{{y}_{1}}^{2}}{4}-\frac{{{y}_{3}}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{3}}$=$\frac{4}{2}$=2,
则直线AC的方程为y-1=2(x-1),
即2x-y-1=0,
故答案为:2x-y-1=0

点评 本题主要考查直线和抛物线的位置关系,根据条件求出直线AB的斜率和AB的中点坐标是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用弧度制表示终边在y轴上的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的首项a1=1,当n≥2时,an=2an-1+1;
(1)证明:数列{an+1}是等比数列;
(2)数列{bn}中,b1=1,n≥2时,bn-bn-1=an,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为点A,直线l:y=x+a与其两条渐近线分别交于点B、C,且$\overrightarrow{OC}$+2$\overrightarrow{OA}$=3$\overrightarrow{OB}$,O为坐标原点,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是$\sqrt{3}$,则双曲线C的方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{\sqrt{3}}$-y2=1D.x2-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知离心率为2的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长为8,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{3}}{3}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}=0$,则双曲线C的离心率为$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{3}+2}}{2}$C.$\frac{{\sqrt{3}+3}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=$\sqrt{3}$(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案