精英家教网 > 高中数学 > 题目详情
10.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{3}+2}}{2}$C.$\frac{{\sqrt{3}+3}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

分析 求得圆O的方程,联立双曲线的方程,求得P的横坐标,再由双曲线的定义,和直角三角形的勾股定理,可得c,b,化简整理可得所求横坐标的值.

解答 解:坐标原点O为圆心,c为半径的圆的方程为x2+y2=c2
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}={c}^{2}}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得x2=$\frac{{c}^{2}+{b}^{2}}{{b}^{2}+1}$,
由|PF1|=c+2,
由双曲线的定义可得|PF2|=|PF1|-2a=c+2-2=c,
在直角三角形PF1F2中,可得c2+(c+2)2=4c2
解得c=1+$\sqrt{3}$,
由c2=a2+b2=1+b2,可得b2=3+2$\sqrt{3}$,
可得P的横坐标为$\sqrt{\frac{7+4\sqrt{3}}{4+2\sqrt{3}}}$=$\frac{1+\sqrt{3}}{2}$.
故选:A.

点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及勾股定理的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若(x2-$\frac{1}{\root{3}{x}}$)n的展开式中有常数项,则当正整数n取最小值时,该常数项为(  )
A.-21B.-7C.7D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线y2=2px的准线方程为x=-1焦点为F,A,B,C为该抛物线上不同的三点,$\overrightarrow{\left|{FA}\right|},\overrightarrow{\left|{FB}\right|},\overrightarrow{\left|{FC}\right|}$成等差数列,且点B在x轴下方,若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,则直线AC的方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.矩形ABCD中,AD=mAB,E为BC的中点,若$\overrightarrow{AE}⊥\overrightarrow{BD}$,则m=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点(0,3b)的直线l与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条斜率为正值的渐近线平行,若双曲线C的右支上的点到直线l的距离恒大于b,则双曲线C的离心率的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左右顶点分别为A1,A2,点P在双曲线C上,且直线PA1的斜率的取值范围为[1,2],那么直线PA2的斜率的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.($\frac{1}{6}$,$\frac{1}{3}$)C.[-$\frac{1}{3}$,-$\frac{1}{6}$]D.(-$\frac{1}{3}$,-$\frac{1}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别是a,b,c,向量$\overrightarrow m=(5a-4c,4b)$与$\overrightarrow n=(cosB,-cosC)$互相垂直.
(Ⅰ)求cosB的值;
(Ⅱ)若$c=5,b=\sqrt{10}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且$\overrightarrow{A{F}_{1}}$=4$\overrightarrow{B{F}_{1}}$,则双曲线C的离心率的值是(  )
A.$\frac{\sqrt{3}}{2}$+1B.$\frac{\sqrt{13}+1}{3}$C.$\frac{\sqrt{13}}{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|x+1|•(2x-1)≥0的解集为(  )
A.{x|x≥$\frac{1}{2}$}B.{x|x≤-1或x≥$\frac{1}{2}$}C.{x|x=-1或x≥$\frac{1}{2}$}D.{x|x≤$\frac{1}{2}$或x≥-1}

查看答案和解析>>

同步练习册答案