精英家教网 > 高中数学 > 题目详情
19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且$\overrightarrow{A{F}_{1}}$=4$\overrightarrow{B{F}_{1}}$,则双曲线C的离心率的值是(  )
A.$\frac{\sqrt{3}}{2}$+1B.$\frac{\sqrt{13}+1}{3}$C.$\frac{\sqrt{13}}{3}$+1D.$\frac{\sqrt{3}+1}{2}$

分析 不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=$\sqrt{13}$,再由双曲线的定义和离心率公式计算即可得到所求值.

解答 解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.
由$\overrightarrow{A{F_1}}=4\overrightarrow{B{F_1}}$,可得|BF1|=1,
在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2-2|BF1|•|F1F2|cos∠BF1F2
=1+16-2×1×4×$\frac{1}{2}$=13,|BF2|=$\sqrt{13}$,
由双曲线的定义可得2a=|BF2|-|BF1|=$\sqrt{13}$-1,
解得a=$\frac{\sqrt{13}-1}{2}$,
则e=$\frac{c}{a}$=$\frac{\sqrt{13}+1}{3}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为点A,直线l:y=x+a与其两条渐近线分别交于点B、C,且$\overrightarrow{OC}$+2$\overrightarrow{OA}$=3$\overrightarrow{OB}$,O为坐标原点,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{3}+2}}{2}$C.$\frac{{\sqrt{3}+3}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=2x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1没有公共点,则双曲线的离心率的取值范围是(  )
A.[$\sqrt{3}$,+∞)B.[$\sqrt{5}$,+∞)C.(1,$\sqrt{3}$]D.(1,$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ (a>0,b>0)的左焦点,定点G(0,c),若双曲线上存在一点P满足|PF|=|PG|,则双曲线的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$)C.[$\sqrt{3}$,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=$\sqrt{3}$(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}({n∈{N^*}})$.
(1)求证:$\left\{{\frac{1}{a_n}+\frac{1}{2}}\right\}$为等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=(3n-2)•$\frac{n}{2^n}•{a_n}$,数列{bn}的前n项和为Tn,若不等式(-1)n•λ<Tn+$\frac{n}{{{2^{n-1}}}}$对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,其一条渐近线为x+$\sqrt{2}$y=0,点M在双曲线上,且MF1⊥x轴,若F2同时为抛物线y2=12x的焦点,则F1到直线F2M的距离为(  )
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{5}{6}$D.$\frac{6}{5}$

查看答案和解析>>

同步练习册答案