精英家教网 > 高中数学 > 题目详情
14.双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率为$\frac{2\sqrt{3}}{3}$.

分析 求得双曲线的a,b,c,运用离心率公式e=$\frac{c}{a}$,计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{3}$-y2=1的a=$\sqrt{3}$,b=1,
c=$\sqrt{{a}^{2}+{b}^{2}}$=2,
可得e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的基本量和离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为(  )
A.$\frac{x^2}{18}-\frac{y^2}{8}=1$B.$\frac{x^2}{36}-\frac{y^2}{16}=1$C.$\frac{x^2}{8}-\frac{y^2}{18}=1$D.$\frac{x^2}{16}-\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过点(0,3b)的直线l与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条斜率为正值的渐近线平行,若双曲线C的右支上的点到直线l的距离恒大于b,则双曲线C的离心率的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别是a,b,c,向量$\overrightarrow m=(5a-4c,4b)$与$\overrightarrow n=(cosB,-cosC)$互相垂直.
(Ⅰ)求cosB的值;
(Ⅱ)若$c=5,b=\sqrt{10}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知M(x0,y0)是曲线C:$\frac{{x}^{2}}{2}$-y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若$\overrightarrow{MF}$$•\overrightarrow{MN}$<0,则x0的取值范围是(  )
A.(-1,0)∪(0,1)B.(-1,0)C.(0,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且$\overrightarrow{A{F}_{1}}$=4$\overrightarrow{B{F}_{1}}$,则双曲线C的离心率的值是(  )
A.$\frac{\sqrt{3}}{2}$+1B.$\frac{\sqrt{13}+1}{3}$C.$\frac{\sqrt{13}}{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,已知a1=4,an+1=3an-2n+1,n∈N+
(1)设bn=an-n,求证:数列{bn}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求证:平面ACC1A1⊥平面A1BD;
(2)AB=AA1=2,求三棱锥B1-A1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C的参数方程为$\left\{\begin{array}{l}{x=4cosα}\\{y=4sinα}\end{array}\right.$(α为参数,0≤α<2π),直线l的参数方程为$\left\{\begin{array}{l}{x=a-2t}\\{y=2\sqrt{3}t}\end{array}\right.$(t为参数).
(Ⅰ)当a=0时,求直线l和圆C交点的直角坐标;
(Ⅱ)以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,若直线l与圆C交于P、Q两点,若Q间的劣弧长为$\frac{8π}{3}$,求直线l的极坐标方程.

查看答案和解析>>

同步练习册答案