精英家教网 > 高中数学 > 题目详情
3.如图,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求证:平面ACC1A1⊥平面A1BD;
(2)AB=AA1=2,求三棱锥B1-A1BD的体积.

分析 (1)由△ABD为等边三角形可得AB=AD,故△ABC≌△ADC,得出AC平分∠BAD,故AC⊥BD,由A1A⊥平面ABCD得A1A⊥BD,故BD⊥平面ACC1A1,于是平面ACC1A1⊥平面A1BD;
(2)取AB的中点M,连结DM,则可证DM⊥平面ABB1A1,故而V${\;}_{{B}_{1}-{A}_{1}BD}$=V${\;}_{D-{A}_{1}{B}_{1}B}$=$\frac{1}{3}{S}_{△{A}_{1}{B}_{1}B}•DM$.

解答 证明:(1)∵AB=BD,∠BAD=60°,
∴△ABD是等边三角形
∴AB=AD,又BC=CD,AC为公共边,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,即AC为∠BAD的平分线,
∴AC⊥BD.
∵A1A⊥平面ABCD,BD?平面ABCD,
∴A1A⊥BD,又A1A?平面ACC1A1,AC?平面ACC1A1,A1A∩AC=A,
∴BD⊥平面ACC1A1,∵BD?平面A1BD,
∴平面ACC1A1⊥平面A1BD.
(2)取AB的中点M,连结DM,
∵△ABD是等边三角形,AB=2,∴DM⊥AB,DM=$\sqrt{3}$.
∵A1A⊥平面ABCD,DM?平面ABCD,
∴A1A⊥DM,又A1A?平面ABB1A1,AB?平面ABB1A1,A1A∩AB=A,
∴DM⊥平面ABB1A1
∴V${\;}_{{B}_{1}-{A}_{1}BD}$=V${\;}_{D-{A}_{1}{B}_{1}B}$=$\frac{1}{3}{S}_{△{A}_{1}{B}_{1}B}•DM$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{3}=\frac{2\sqrt{3}}{3}$.

点评 本题考查了线面垂直,面面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且$\overrightarrow{BA}•\overrightarrow{BF}=0$,则双曲线C的离心率为$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=$\sqrt{3}$(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,双曲线两渐近线分别为l1,l2,过点F作直线l1的垂线,分别交l1,l2于A,B两点,若A,B两点均在x轴上方且|OA|=3,|OB|=5,则双曲线的离心率e为(  )
A.$\frac{\sqrt{5}}{2}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}({n∈{N^*}})$.
(1)求证:$\left\{{\frac{1}{a_n}+\frac{1}{2}}\right\}$为等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=(3n-2)•$\frac{n}{2^n}•{a_n}$,数列{bn}的前n项和为Tn,若不等式(-1)n•λ<Tn+$\frac{n}{{{2^{n-1}}}}$对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设对任意实数x>y>0,若不等式x+2$\sqrt{xy}$>ay恒成立,则实数a的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“p∨q为真”是“¬p为假”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O为坐标原点),且|PF1|=$\sqrt{2}$|PF2|,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}+2}{2}$B.$\sqrt{3}$+2C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

同步练习册答案