精英家教网 > 高中数学 > 题目详情
13.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O为坐标原点),且|PF1|=$\sqrt{2}$|PF2|,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}+2}{2}$B.$\sqrt{3}$+2C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}$+$\sqrt{6}$

分析 利用向量的数量积的性质可得|OP|=|OF2|=c=|OF1|,可得PF1⊥PF2,运用双曲线的定义和已知条件,可得|PF2|=2($\sqrt{2}$+1)a,|PF1|=2$\sqrt{2}$($\sqrt{2}$+1)a,再由勾股定理和离心率公式计算即可得到所求值.

解答 解:由($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,
可得$\overrightarrow{OP}$2-$\overrightarrow{O{F}_{2}}$2=0,
即有|OP|=|OF2|=c=|OF1|,
可得PF1⊥PF2
Rt△PF1F2中,|PF1|=$\sqrt{2}$|PF2|,
由双曲线的定义得|PF1|-|PF2|=2a,
即有|PF2|=2($\sqrt{2}$+1)a,|PF1|=2$\sqrt{2}$($\sqrt{2}$+1)a,
由勾股定理可得|PF2|2+|PF1|2=|F1F2|2
即4c2=4(3+2$\sqrt{2}$)a2+8(3+2$\sqrt{2}$)a2
化简可得c2=(9+6$\sqrt{2}$)a2
由离心率公式e=$\frac{c}{a}$=$\sqrt{6}$+$\sqrt{3}$.
故选:D.

点评 本题考查双曲线的定义和双曲线的简单性质的应用,其中判断△PF1F2是直角三角形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在直四棱柱ABCD-A1B1C1D1中,∠BAD=60°,AB=BD,BC=CD.
(1)求证:平面ACC1A1⊥平面A1BD;
(2)AB=AA1=2,求三棱锥B1-A1BD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C的参数方程为$\left\{\begin{array}{l}{x=4cosα}\\{y=4sinα}\end{array}\right.$(α为参数,0≤α<2π),直线l的参数方程为$\left\{\begin{array}{l}{x=a-2t}\\{y=2\sqrt{3}t}\end{array}\right.$(t为参数).
(Ⅰ)当a=0时,求直线l和圆C交点的直角坐标;
(Ⅱ)以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,若直线l与圆C交于P、Q两点,若Q间的劣弧长为$\frac{8π}{3}$,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图:抛物线y2=x与直线x=ty-1交于A,B两点,点B关于x轴的对称点为C,则直线AC在x轴上的截距(  )
A.1B.$\frac{1}{2}$
C.$\frac{1}{4}$D.不是定值,与t的值相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点F到渐近线的距离为2a,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=$\overrightarrow{c}$=(-3,3),$\overrightarrow{b}$=(1,0),执行如图所示的程序框图,则输出i的值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足zi=1-i,(i为虚数单位),则|z|=(  )
A.1B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.运行如图所示的流程图,则输出的结果S是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0).若抛物线y2=4cx与该双曲线在第一象限的交点为M,当|MF1|=4c时,该双曲线的离心率为1+$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案