精英家教网 > 高中数学 > 题目详情
4.已知圆C的参数方程为$\left\{\begin{array}{l}{x=4cosα}\\{y=4sinα}\end{array}\right.$(α为参数,0≤α<2π),直线l的参数方程为$\left\{\begin{array}{l}{x=a-2t}\\{y=2\sqrt{3}t}\end{array}\right.$(t为参数).
(Ⅰ)当a=0时,求直线l和圆C交点的直角坐标;
(Ⅱ)以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,若直线l与圆C交于P、Q两点,若Q间的劣弧长为$\frac{8π}{3}$,求直线l的极坐标方程.

分析 (I)将曲线C化成普通方程,将直线l的参数方程代入圆的普通方程得出参数的值,即可求出交点的坐标;
(II)根据弧长计算圆心角,得出圆心到直线的距离.列出方程解出a,再将直线方程化成极坐标方程.

解答 解:(I)圆C的普通方程为x2+y2=16,
将直线l的参数方程$\left\{\begin{array}{l}{x=-2t}\\{y=2\sqrt{3}t}\end{array}\right.$代入圆C的普通方程得:
16t2=16,∴t=1或-1.
∴$\left\{\begin{array}{l}{x=-2}\\{y=2\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=-2\sqrt{3}}\end{array}\right.$.
∴直线l和圆C交点的直角坐标为(-2,2$\sqrt{3}$),(2,-2$\sqrt{3}$).
(II)∵$\widehat{PQ}$=$\frac{8π}{3}$,圆C的半径为4,∴∠PCQ=$\frac{2π}{3}$.
∴圆心C到直线l的距离为$\frac{1}{2}PC$=2.
∵直线l的普通方程为$\sqrt{3}$x+y-$\sqrt{3}$a=0,
∴$\frac{|\sqrt{3}a|}{2}$=2.解得a=±$\frac{4\sqrt{3}}{3}$.
∴直线l的普通方程为$\sqrt{3}$x+y-4=0,或$\sqrt{3}$x+y+4=0,
∴直线l的极坐标方程为$\sqrt{3}ρcosθ$+ρsinθ-4=0或$\sqrt{3}$ρcosθ+ρsinθ+4=0.

点评 本题考查了参数方程,极坐标方程与普通方程的转化,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{3}$-y2=1的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设对任意实数x>y>0,若不等式x+2$\sqrt{xy}$>ay恒成立,则实数a的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“p∨q为真”是“¬p为假”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρ=$\sqrt{2}$.直线l的参数方程为:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(I)写出曲线C的参数方程和直线l的极坐标方程:
(Ⅱ)若直线1与曲线C交于A,B两点.设点P是曲线C上的一个动点(且不与点A,B重合).求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,其一条渐近线为x+$\sqrt{2}$y=0,点M在双曲线上,且MF1⊥x轴,若F2同时为抛物线y2=12x的焦点,则F1到直线F2M的距离为(  )
A.$\frac{{3\sqrt{6}}}{5}$B.$\frac{{5\sqrt{6}}}{6}$C.$\frac{5}{6}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读如图所示的程序框图,若运行该程序后输出的y的值为4,则输入的实数x的值为(  )
A.4B.16C.-1或16D.-1或$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O为坐标原点),且|PF1|=$\sqrt{2}$|PF2|,则双曲线的离心率为(  )
A.$\frac{\sqrt{3}+2}{2}$B.$\sqrt{3}$+2C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为($\frac{π}{3}$,0),求θ的最小值.
(3)对任意的x∈[$\frac{π}{4}$,$\frac{5π}{6}$]时,方程f(x)=m有两个不等根,求m的取值范围.

查看答案和解析>>

同步练习册答案