分析 求出直线l的方程,利用双曲线C的右支上的点到直线l的距离恒大于b,直线l与bx-ay=0的距离恒大于等于b,运用平行直线的距离公式,建立不等式,即可求出双曲线C的离心率的最大值.
解答 解:由双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程y=±$\frac{b}{a}$x,
可得直线l的方程为y=$\frac{b}{a}$x+3b,即bx-ay+3ab=0,
由双曲线C的右支上的点到直线l的距离恒大于b,
可得直线l与bx-ay=0的距离恒大于等于b,
即有$\frac{3ab}{\sqrt{{a}^{2}+{b}^{2}}}$≥b,
化简可得8a2≥b2,
8a2≥c2-a2,
即c2≤9a2,即有c≤3a,
可得离心率e=$\frac{c}{a}$≤3.
则离心率的最大值为3.
故答案为:3.
点评 本题考查双曲线的离心率的最大值的求法,是中档题,解题时要注意双曲线的渐近线的方程的灵活运用,考查点到直线的距离公式,以及运算能力.
科目:高中数学 来源: 题型:选择题
| A. | 9种 | B. | 8种 | C. | 6种 | D. | 4种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{\sqrt{3}}$-y2=1 | D. | x2-$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x2-y2=1 | B. | $\frac{x^2}{3}-{y^2}$=1 | C. | x2-3y2=1 | D. | ${x^2}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\frac{{\sqrt{3}+2}}{2}$ | C. | $\frac{{\sqrt{3}+3}}{2}$ | D. | $\frac{{3\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,0] | C. | (-∞,3) | D. | (-∞,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com