分析 (I)利用向量垂直与数量积的关系可得:(5a-4c)cosB-4bcosC=0,再利用正弦定理、和差公式即可得出;
(II)利用余弦定理、三角形面积计算公式即可得出.
解答 解:(Ⅰ)∵$\overrightarrow m⊥\overrightarrow n$,∴(5a-4c)cosB-4bcosC=0,
∴(5sinA-4sinC)cosB=4sinBcosC,
∴5sinAcosB=4(sinBcosC+cosBsinC)=4sin(B+C)=4sinA,
而sinA≠0,∴$cosB=\frac{4}{5}$.
(Ⅱ)由余弦定理得,$10=25+{a^2}-2×5×a×\frac{4}{5}$,
化简得,a2-8a+15=0,
解得,a=3或a=5,
而$c=5,sinB=\frac{3}{5}$,又$S=\frac{1}{2}casinB$,
故$S=\frac{1}{2}×5×3×\frac{3}{5}=\frac{9}{2}$或$S=\frac{1}{2}×5×5×\frac{3}{5}=\frac{15}{2}$.
点评 本题考查了向量垂直与数量积的关系、正弦定理、和差公式、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}+1}}{2}$ | B. | $\frac{{\sqrt{3}+2}}{2}$ | C. | $\frac{{\sqrt{3}+3}}{2}$ | D. | $\frac{{3\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{3}$,+∞) | B. | [$\sqrt{5}$,+∞) | C. | (1,$\sqrt{3}$] | D. | (1,$\sqrt{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com