精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠ADC为直角,AD∥BC,AB⊥AC,AC=AB=2,PA=1,G是△PAC的重心,E为PB中点,F在线段BC上,且CF=2FB.
(1)证明:FG∥平面PAB;    
(2)证明:FG⊥AC;
(3)求三棱锥P-ACE的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的性质
专题:计算题,证明题,空间位置关系与距离
分析:(1)欲证FG∥平面PAB,根据直线与平面平行的判定定理可知只需证FG与平面PAB内一直线平行,连接CG延长交PA于M,连BM,根据比例可得FG∥BM,BM?平面PAB,FG?平面PAB,满足定理条件;
(2)欲证FG⊥AC,而FG∥BM,可先证AC⊥BM,欲证AC⊥BM,可证AC⊥平面PAB,根据直线与平面垂直的判定定理可知只需证AC与平面PAB内两相交直线垂直,而PA⊥AC,又AB⊥AC,PA∩AB=A,满足定理条件;
(3)由(2)知,AC⊥平面PAB,由VP-ACE=VC-AEP=
1
3
AC•S△AEP.即可得到.
解答: (1)证明:(1)连接CG延长交PA于M,连BM,
∵G为△PAC的重心,∴
CG
GM
=2
又∵
CF
FB
=2
,∴FG∥BM.
又∵BM?平面PAB,
∴FG?平面PAB,
∴FG∥平面PAB
(2)证明:∵PA⊥平面ABCD,PA⊥AC,又AB⊥AC,PA∩AB=A,
∴AC⊥平面PAB,∴AC⊥BM.
由(I)知FG∥BM,∴FG⊥AC;
(3)由(2)知,AC⊥平面PAB,
∴VP-ACE=VC-AEP=
1
3
AC•S△AEP
=
1
3
×2×
1
2
×1×2×
1
2
=
1
6
点评:本题考查直线与平面平行、垂直的判定和性质定理,同时考查棱锥的体积转换法,及棱锥的体积公式,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某种产品的广告费用支出x(百万元)与销售额y(百万元)之间有如下对应数据:
x24568
y3040605070
(Ⅰ)求其回归直线方程;
(Ⅱ)试预测广告费用支出为10个百万元时,销售额有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x-a)-
1
2
x2
+x(a<0).
(1)求f(x)的单调区间;
(2)若-1<a<2(ln2-1),求证:函数f(x)只有一个零点x0,且a+1<x0<a+2;
(3)当a=-
4
5
时,记函数f(x)的零点为x0,若对任意x1,x2∈[0,x0]且x2-x1=1,都有|f(x2)-f(x1)|≥m成立,求实数m的最大值.(本题可参考数据:ln2≈0.7,ln
9
4
≈0.8,ln
9
5
≈0.59)

查看答案和解析>>

科目:高中数学 来源: 题型:

一次函数的图象经过点(0,-1),(1,1),求其解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)=ax-2.
(1)当a=3时,解不等式|f(x)|<4;
(2)解关于x的不等式|f(x)|<4;
(3)若不等式|f(x)|≤3对任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项之和为Sn,若S5=25且a6=11
(1)求数列{an}的通项公式;
(2)求
1
a1a3
+
1
a2a4
+
1
a3a5
+…+
1
anan-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A、B、C成等差数列,边AB与BC的差等于AC边上的高,求证:sinC-sinA=sinC•sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在轴上的椭圆
x2
a2
+
y2
b2
=1(a>b>0),其长轴长为4,且点(1,
3
2
)在该椭圆上.
(1)求椭圆的标准方程;
(2)直线y=x+1与椭圆两个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若锐角A,B,C满足A+B+C=π,以角A,B,C分别为内角构造一个三角形,设角A,B,C所对的边分别是a,b,c,依据正弦定理和余弦定理,得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,现已知锐角A,B,C满足A+B+C=π,则(
π
2
-
A
2
)+(
π
2
-
B
2
)+(
π
2
-
C
2
)=π,类比上述方法,可以得到的等式是
 

查看答案和解析>>

同步练习册答案