精英家教网 > 高中数学 > 题目详情
15.函数y=logax,y=ax,y=x+a在同一坐标系中的图象可能是(  )
A.B.C.D.

分析 根据指数函数,对数函数和一次函数的图象和性质分别进行判断即可.

解答 解:对于A:由指数函数和对数函数的单调性可知a>1,此时直线y=x+a的截距不满足条件.
对于B:指数函数和对数函数的单调性不相同,不满足条件.
对于C:由指数函数和对数函数的单调性可知0<a<1,此时直线y=x+a的截距满足条件.
对于D:由指数函数和对数函数的单调性可知0<a<1,此时直线y=x+a的截距a>1不满足条件.
故选:C.

点评 本题主要考查函数图象的识别和判断,要求熟练掌握指数函数和对数函数的图象和性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈[0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为(  )
A.-$\frac{1}{16}$B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>3)=0.023,则P(-3≤ξ≤3)=(  )
A.0.954B.0.023C.0.977D.0.046

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=ax2-(2a+1)x+a+1对于任意a∈[-1,1],都有f(x)<0,则实数x的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分别为PC,BD的中点.
(1)证明:EF∥平面PAD;
(2)证明:直线PA⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a和b的值.
(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.
(3)设$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正项等比数列{an}满足a7=a6+2a5,若存在两项am,an,使得$\sqrt{{a_m}{a_n}}=4{a_1}$,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=(3-x2)ex的单调递增区间是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-3)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=x2ex-a恰有三个零点,则实数a的取值范围是(  )
A.$({\frac{4}{e^2},+∞})$B.$({0,\frac{4}{e^2}})$C.(0,4e2D.(0,+∞)

查看答案和解析>>

同步练习册答案