精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=ax2-(2a+1)x+a+1对于任意a∈[-1,1],都有f(x)<0,则实数x的取值范围是(1,2).

分析 把原函数整理成关于a的一次函数,利用一次函数的单调性求得函数在[-1,1]上的最大值,令最大值小于0,可得x的范围.

解答 解:函数可整理为f(x)=(x2-x+1)a+1-x
∵对于a∈[-1,1]时恒有f(x)<0,
∴(x2-x+1)a+1-x<0恒成立.
令g(a)=(x2-2x+1)a+1-x.
则函数g(a)在区间[-1,1]上的最大值小于0,
∵g(a)为一次函数,且一次项系数x2-2x+1>0,
∴函数g(a)在区间[-1,1]上单调递增,
∴g(a)max=g(1)=x2-2x+1+1-x=x2-3x+2<0.
解得1<x<2.
故答案为:(1,2).

点评 本题主要考查了利用函数的单调性求函数最大值.在把恒成立问题转化为求函数的最值问题的过程中,体现了转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如果复数$\frac{2+ai}{1+i}(a∈R)$为纯虚数,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y>-1\end{array}\right.$,则$z=\frac{y}{x+1}$的范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是R上的奇函数f(x+4)=f(x),当x∈[0,1]时,f(x)=3x,则f(11.5)=(  )
A.1.5B.0.5C.-1.5D.-0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2016}$的值的程序框图,其中判断框内可填入的是(  )
A.i≤2 021?B.i≤2 019?C.i≤2 017?D.i≤2 015?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=logax,y=ax,y=x+a在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(2x+ϕ)(A>0,0<ϕ<\frac{π}{2})$,当$x=\frac{π}{12}$时,f(x)有最大值2.
(1)求f(x)的最小正周期及解析式;
(2)若$f(α+\frac{π}{3})=-\frac{1}{2},α∈[0,\frac{π}{4}]$,求$f(α+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C的对边分别是a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求角B的值;
(2)若a+c=6,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求边b的长.

查看答案和解析>>

同步练习册答案