【题目】如图,在
中,
,点
在线段
上.过点
作
交
于点
,将
沿
折起到
的位置(点
与
重合),使得
.
![]()
(Ⅰ)求证:
.
(Ⅱ)试问:当点
在线段
上移动时,二面角
的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ)答案见解析.
【解析】分析:(1)由已知条件,结合线面垂直的判定定理和性质定理,即可得到
.
(2)过点
作
,则
,
,
两两垂直,以B为坐标原点,以
,
的方向分别为
轴,
轴,
轴的正方向建立空间直角坐标系.设
,应用空间向量,分别求得两平面的法向量
,计算两平面法向量夹角,证明点
在线段
上移动时,二面角
的平面角的余弦值为定值,且定值为
.
详解:证明:(Ⅰ)在
中,
因为
,所以
,所以
,
,
又因为
,
平面
,所以
平面
.
又因为
平面
,所以
.
(Ⅱ)在平面
内,过点
作
于点
,
由(Ⅰ)知
平面
,所以
,
又因为
,
平面
,所以
平面
.
在平面
内过点
作直线
,则
平面
.
如图所示,以
为坐标原点,
,
,
的方向分别为
轴,
轴,
轴的正方向建立空间直角坐标系.
设
,
又因为
,
所以
,
.
在
中,
,
所以
,
,所以
,
所以
,
,
.
从而
,
.
设
是平面
的一个法向量,
所以
,即
,
所以
,
取
,得
是平面
的一个法向量.
又平面
的一个法向量为
,
设二面角
的平面角为
,
则
.
因此当点
在线段
上移动时,二面角
的平面角的余弦值为定值,且定值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:万元)对年销售量
(单位:
)的影响,对近
年的年宣传费
和年销售量
作了初步统计和处理,得到的数据如下:
年宣传费 |
|
|
|
|
年销售量 |
|
|
|
|
,
.
![]()
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出
关于
的线性回归方程
;
(3)若公司计划下一年度投入宣传费
万元,试预测年销售量
的值.
参考公式![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
![]()
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,∠PAC=∠BAC=90°,PA=PB,点D,F分别为BC,AB的中点.
![]()
(1)求证:直线DF∥平面PAC;
(2)求证:PF⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,给定数列
,其中
,
.
(1)若
为常数数列,求a的值;
(2)当
时,探究
能否是等比数列?若是,求出
的通项公式;若不是,说明理由;
(3)设
,数列
的前n项和为
,当a=1时,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点. ![]()
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a+bx与
,若对于任意一点
,过点
作与X轴垂直的直线,交函数y=a+bx的图象于点
,交函数
的图象于点
,定义:
,若
则用函数y=a+bx来拟合Y与X之间的关系更合适,否则用函数
来拟合Y与X之间的关系
(1)给定一组变量P1(1,4),P2(2,5),p3(3,6),p4(4,5.5),p5(5,5.6),p6(6,5.8),对于函数
与函数
,试利用定义求Q1,Q2的值,并判断哪一个更适合作为点PI(xi,yi)(i=1,2,3…6)中的Y与X之间的拟合函数;
(2)若一组变量的散点图符合
图象,试利用下表中的有关数据与公式求y对x的回归方程, 并预测当
时,
的值为多少.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中的![]()
(附:对于一组数据
,其回归直线方程
的斜率和截距的最小二乘估计分别为
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com