精英家教网 > 高中数学 > 题目详情
14.直线x-my-8=0与抛物线y2=8x交于A、B两点,O为坐标原点,则△OAB面积的取值范围是[64,+∞).

分析 联立方程$\left\{\begin{array}{l}x=my+8\\{y^2}=8x\end{array}\right.$,得y2-8my-64=0,利用韦达定理,结合三角形的面积,即可求出△OAB面积的取值范围.

解答 解:联立方程$\left\{\begin{array}{l}x=my+8\\{y^2}=8x\end{array}\right.$,得y2-8my-64=0,△>0,y1+y2=8m,y1y2=-64,
因为x-my-8=0过定点(8,0),
所以${S_{OAB}}=\frac{1}{2}|{{y_1}-{y_2}}|•8=4\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=4\sqrt{64{m^2}+4•64}$,
当m=0时,Smin=64.
故答案为[64,+∞).

点评 本题考查△OAB面积的取值范围,考查直线与抛物线的位置关系,正确运用韦达定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求证:CD⊥平面PAC;
(2)侧棱PA上中点E,求证:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=2px(p>0)过点(4,4),它的焦点F,倾斜角为$\frac{π}{3}$的直线l过点F且与抛物线两交点为A,B,点A在第一象限内.
(1)求抛物线和直线l的方程;
(2)求|AF|:|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=2px(p>0)上一点P(1,t)(t>0)到焦点F的距离等于2.
(1)求抛物线的方程及点P、F坐标;
(2)过P点做互相垂直的两条直线交抛物线于另外两点A,B.
   ①当直线AB的斜率为-$\frac{2}{5}$时,求直线AB的方程;
   ②求证:直线AB经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义行列式运算$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=a1a4-a2a3.将函数f(x)=$|{\begin{array}{l}{sin2x}&{\sqrt{3}}\\{cos2x}&1\end{array}}|$的图象向右平移$\frac{π}{6}$个单位后,所得函数图象的一个对称轴是(  )
A.x=$\frac{7π}{12}$B.x=$\frac{π}{2}$C.x=$\frac{5π}{12}$D.$x=\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=8-22-x(x≥0)的值域是[2,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三角形△ABC中,角A,B,C所对的边分别为a,b,c且A=60°,B=45°,c=20,则a=30$\sqrt{2}$-10$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=x-1,则不等式xf(x)≥0的解集为(-∞,-1]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{(a+3)x-5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是[-2,0).

查看答案和解析>>

同步练习册答案