精英家教网 > 高中数学 > 题目详情
18.下列函数中,在其定义域内既是奇函数又是单调递增的函数是(  )
A.y=-$\frac{1}{x}$B.y=3-x-3xC.y=x|x|D.y=x3-x

分析 先求出函数的定义域,再验证f(-x)和f(x)的关系判断奇偶性,最后利用基本初等函数判定单调性.

解答 解:对于A,y=$\frac{1}{x}$的定义域为{x|x≠0},是奇函数,但在定义域上不单调,不满足条件;
对于B,y=3-x-3x的定义域为R,奇函数,是定义域上单调减函数,不满足条件;
对于C,y=x|x|的定义域为R,满足f(-x)=-f(x),是奇函数,是定义域R上的单调增函数,满足题意;
对于D,f(x)=x3-x的定义域为R,满足f(-x)=-f(x),是奇函数,在R上不是单调函数,不满足条件.
故选:C.

点评 本题考查了函数的奇偶性和单调性的应用问题,解题时应先考虑定义域,再判定奇偶性与单调性,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.过定点P(1,2)的直线$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t为参数),与圆x2+y2=4相交于A、B两点.则|AB|=$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}满足an∈N*,且前10项和S10=280,则a9的最大值为(  )
A.29B.49C.50D.58

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序号是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow{b}$)(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(-1,0),B(1,-2),C(1,0)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设两条直线的方程分别为x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的两个实根,且0≤c≤$\frac{1}{2}$,则这两条直线之间的距离的最大值和最小值的差为(  )
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(x,y)是曲线C:$\left\{\begin{array}{l}{x=3+cosθ}\\{y=2+\sqrt{3}sinθ}\end{array}\right.$上的任意一点,求3x+y的取值范围.

查看答案和解析>>

同步练习册答案