精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax+lnx,x∈(1,e).
(1)当a=-$\frac{1}{2}$时,求f(x)的单调区间;
(2)若f(x)有极值,求实数a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,问题转化为a=-$\frac{1}{x}$在(1,e)有解,求出a的范围即可.

解答 解:(1)a=-$\frac{1}{2}$时,f(x)=-$\frac{1}{2}$x+lnx,
f′(x)=-$\frac{1}{2}$+$\frac{1}{x}$=$\frac{2-x}{2x}$,
令f′(x)>0,解得:1<x<2,
令f′(x)<0,解得:2<x<e,
故f(x)在(1,2)递增,在(2,e)递减;
(2)f′(x)=a+$\frac{1}{x}$=$\frac{ax+1}{x}$,
若f(x)有极值,只需ax+1=0在(1,e)有解,
即a=-$\frac{1}{x}$在(1,e)有解,
故-1<a<-$\frac{1}{e}$.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,则a0+a1+a2+a3+a4+a5+a6等于(  )
A.4B.-71C.64D.199

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的极坐标方程为ρ2cos2θ=18,曲线C2的极坐标方程为θ=$\frac{π}{6}$,曲线C1,C2相交于A,B两点.
(1)求A,B两点的极坐标;
(2)曲线C1与直线$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=($\frac{1}{2}$)10-ax,其中a为常数,且f(3)=$\frac{1}{16}$.
(1)求a的值;
(2)若f(x)≥4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.f(x)=ex-ax2-(a+1)x-1,a∈R,(e为自然对数的底数)
(1)a=0时,求f(x)的极值;
(2)若?x0∈[0,1],使得f′(x)≥b成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x1,x2,…,x10为1,2,…,10的一个排列,则满足对任意正整数m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的个数为512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位后关于y轴对称,则以下判断不正确的是(  )
A.$f({x+\frac{π}{4}})$是奇函数B.$({\frac{π}{4},0})$为f(x)的一个对称中心
C.f(x)在$({-\frac{3π}{4},-\frac{π}{4}})$上单调递增D.f(x)在(0,$\frac{π}{2}$)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,记z=x+3y的最小值为k,则函数f(x)=ex+k-2的图象恒过定点(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有种12.

查看答案和解析>>

同步练习册答案