19£®¡°$\left\{\begin{array}{l}{{x}_{1}£¾3}\\{{x}_{2}£¾3}\end{array}\right.$¡±ÊÇ¡°$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}£¾6}\\{{x}_{1}{x}_{2}£¾9}\end{array}\right.$¡±³ÉÁ¢µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®·Ç³ä·Ö·Ç±ØÒªÌõ¼þD£®³äÒªÌõ¼þ

·ÖÎö ÓÉ¡°$\left\{\begin{array}{l}{{x}_{1}£¾3}\\{{x}_{2}£¾3}\end{array}\right.$¡±ÍƳö¡°$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}£¾6}\\{{x}_{1}{x}_{2}£¾9}\end{array}\right.$¡±³ÉÁ¢£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö½áÂÛ£®

½â´ð ½â£ºÓÉ¡°$\left\{\begin{array}{l}{{x}_{1}£¾3}\\{{x}_{2}£¾3}\end{array}\right.$¡±¿ÉÒÔÍÆ³ö¡°$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}£¾6}\\{{x}_{1}{x}_{2}£¾9}\end{array}\right.$¡±³ÉÁ¢£¬·´Ö®²»³ÉÁ¢£¬ÀýÈçÈ¡x1=7£¬x2=2£®
¡à¡°$\left\{\begin{array}{l}{{x}_{1}£¾3}\\{{x}_{2}£¾3}\end{array}\right.$¡±ÍƳö¡°$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}£¾6}\\{{x}_{1}{x}_{2}£¾9}\end{array}\right.$¡±³ÉÁ¢µÄ³Ë·¨²»±ØÒªÌõ¼þ£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁ˲»µÈʽµÄÐÔÖÊ¡¢³äÒªÌõ¼þµÄÅж¨·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÕýÊýx£¬yÂú×ãx+2y=1£¬Ôò$\frac{1}{x}$+$\frac{2}{y}$µÄ×îСֵΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª|sin¦È|=-sin¦È£¬|cos¦È|=cos¦È£¬sin¦Ècos¦È¡Ù0£¬ÔòµãP£¨tan¦È£¬sin¦È£©ÔÚµÚÈýÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýy=$\frac{|{x}^{2}-1|}{x-1}$µÄͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®½¹µãÔÚxÖáÉϵÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¶ÌÖáµÄÒ»¸ö¶ËµãºÍÁ½¸ö½¹µãÏàÁ¬¹¹³ÉÒ»¸öÈý½ÇÐΣ¬¸ÃÈý½ÇÐÎÄÚÇÐÔ²µÄ°ë¾¶Îª$\frac{b}{3}$£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x-1£©µÄ¶¨ÒåÓòΪ£¨-1£¬4£©£¬Ôòº¯Êýf£¨|2x+1|£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-1£¬2£©B£®£¨-2£¬1£©C£®£¨-3£¬3£©D£®£¨-$\frac{5}{2}$£¬$\frac{3}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨2x£©µÄ¶¨ÒåÓòÊÇ[$\frac{1}{2}$£¬1]£¬Ôòº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[$\sqrt{2}$£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©Çó¹ýÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1ÄÚÒ»µãP£¨1£¬1£©ÇÒ±»¸Ãµãƽ·ÖµÄÏÒËùÔÚµÄÖ±Ïß·½³Ì£»
£¨2£©ÇóÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{7}$=1Éϵĵ㵽ֱÏß1£º3x-2y-16=0µÄ×î¶Ì¾àÀ룬²¢ÇóÈ¡µÃ×î¶Ì¾àÀëʱÍÖÔ²ÉϵĵãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏM⊆{2£¬3£¬4}£¬ÇÒMÖÐÖÁ¶àÓÐÒ»¸öżÊý£¬ÔòÕâÑùµÄ¼¯ºÏÓУ¨¡¡¡¡£©
A£®3¸öB£®4¸öC£®5¸öD£®6¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸