精英家教网 > 高中数学 > 题目详情
等比数列b1、b2、b3的公比是q(q<0)且b1+b2+b3=a(a为正常数)则b1b2b3的最小值为(  )
A、-a3
B、-
a3
27
C、
a3
27
D、a3
考点:等比数列的性质
专题:等差数列与等比数列
分析:由题意易得(b22=b1b3,b2
1
q
+1+q)=a,而
1
q
+1+q=1-[
1
-q
+(-q)],由基本不等式可得其取值范围,再由不等式的性质可得答案.
解答: 解:∵等比数列b1、b2、b3的公比是q(q<0),
∴(b22=b1b3
又b1+b2+b3=a,∴b2
1
q
+1+q)=a,
∵q<0,∴
1
q
+1+q=1-[
1
-q
+(-q)]≤1-2
1
q
•q
=-1,
当且仅当
1
-q
=-q即q=-1时取等号,
∴b2=
a
1
q
+1+q
∈[-a,0],
∴b1b2b3=(b23∈[-a3,0],
∴b1b2b3的最小值为:-a3
故选:A
点评:本题考查等比数列的性质,涉及基本不等式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3cos(x+
π
6
)

(1)写出函数f(x)的周期;
(2)将函数f(x)图象上所有的点向右平移
π
6
个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为4
5
,则直线l的方程为(  )
A、2x-y+3=0
B、x+2y+9=0
C、x-2y-9=0
D、2x-y+3=0或x+2y+9=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
,设函数f(x)=
a
b

(1)若f(x)=0且x∈(0,π)求x的值;
(2)求函数f(x)取得最大值时,平面向量
a
b
的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin2α=
2
5
5
,则sin4α+cos4α的值是(  )
A、
1
2
B、
3
4
C、
2-
2
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足
1
2
a+b=1
,则3a+9b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2
x+4
+2)(x>0)的反函数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z为虚数,条件甲:z+
1
z
是实数,条件乙:|z|=1,则(  )
A、甲是乙的必要非充分条件
B、甲是乙的充分非必要条件
C、甲是乙的充要条件
D、甲既不是乙的必要条件,也不是乙的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,F关于原点的对称点为P,过F作x轴的垂线交抛物线于M,N两点,有下列四个命题:
①△PMN必为直角三角形;
②△PMN必为等边三角形;
③直线PM必与抛物线相切;
④直线PM必与抛物线相交.
其中正确的命题是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步练习册答案