精英家教网 > 高中数学 > 题目详情
16.过双曲线$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=$\frac{2}{3}$π,则双曲线的渐近线方程为(  )
A.y=±$\frac{{\sqrt{3}}}{3}$xB.y=±$\sqrt{3}$xC.y=±xD.y=±$\frac{{\sqrt{3}}}{2}$x

分析 作出双曲线的图象,求出渐近线的斜率即可得到结论.

解答 解:如图若∠PFQ=$\frac{2}{3}$π,
则由对称性得∠QFO=$\frac{π}{3}$,
则∠QOx=$\frac{π}{3}$,
即OQ的斜率k=$\frac{a}{b}$=tan$\frac{π}{3}$=$\sqrt{3}$,
则双曲线渐近线的方程为y=±$\sqrt{3}$x,
故选:B

点评 本题主要考查双曲线渐近线的求解,根据直线垂直求出渐近线的倾斜角和斜率是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=cosx(λsinx-cosx)+cos2(${\frac{π}{2}$-x)+1(λ>0)的最大值为3.
(I)求函数f(x)的对称轴;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{cosA}{cosB}$=$\frac{a}{2c-b}$,若不等式f(B)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=x2+2(a-1)x+6在(-∞,4)上是减函数,在(4,+∞)上是增函数.则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b,c为实数,关于x的二次方程ax2+bx+c=0有两个非零实根x1、x2,则下列关于x的一元二次方程中以$\frac{1}{{x}_{1}^{2}}$,$\frac{1}{{x}_{2}^{2}}$为根的是(  )
A.c2x2+(b2-2ac)x+a2=0B.c2x2-(b2-2ac)x+a2=0
C.c2x2+(b2-2ac)x-a2=0D.c2x2-(b2-2ac)x-a2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线x2=8y的焦点F的坐标是(  )
A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=2sin(2x-$\frac{π}{6}$),则该函数图象的一条对称轴方程是(  )
A.x=$\frac{π}{12}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|x2-x-2<0},B={-2,0,1},则A∩B等于(  )
A.{2}B.{0,1}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-cx-c(c为常数,e是自然对数的底数),f′(x)是函数y=f(x)的导函数.
(1)求函数f(x)的单调区间;
(2)当c>1时,试求证:
①对任意的x>0,不等式f(lnc+x)>f(lnc-x)恒成立;
②函数y=f(x)有两个相异的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆和直线的方程如图所示,请用不等式表示图中阴影部分所示的平面区域.

查看答案和解析>>

同步练习册答案