精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2+4ax+6.
(1)若a=$\frac{1}{2}$,求函数的最小值.
(2)若函数为定义在[-2,2]上的偶函数,求函数的值域.

分析 (1)将a=$\frac{1}{2}$代入,化为顶点式,可得函数的最小值;
(2)根据偶函数的定义求出a,得到函数的解析式,进而可得函数的值域.

解答 解:(1)若a=$\frac{1}{2}$,则函数f(x)=x2+2x+6=(x+1)2+5≥5,
即函数的最小值为5;
(2)若函数为定义在[-2,2]上的偶函数,
则f(-x)=f(x),
即x2-4ax+6=x2+4ax+6,
解得:a=0,
此时f(x)=x2+6∈[6,10]

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7
(2)($\frac{1}{4}$)${\;}^{\frac{1}{3}}$和($\frac{1}{4}$)${\;}^{\frac{2}{3}}$;
(3)2-1.5和30.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.考察某校高三年级男生的身高,随机抽取50名高男生,实测身高数据(单位:cm) 如下:
171,169,167,169,151,168,170,168,160,174,171,163,163,166,166,168,168,160,168,165,176,157,162,161,158,164,163,163,167,161,165,168,174,159,167,156,157,164,169,180,152,154,157,161,164,166,173,175,178,180.
(1)作出频率分布表;
(2)画出频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m=ax,n=ay且my•nx=${a}^{\frac{2}{z}}$,求xyz的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简(式中字母均为正数):
(1)a${\;}^{\frac{1}{3}}$a${\;}^{\frac{3}{4}}$a${\;}^{\frac{7}{12}}$;
(2)(x${\;}^{\sqrt{3}}$y${\;}^{-\frac{\sqrt{3}}{4}}$)${\;}^{\frac{1}{\sqrt{3}}}$;
(3)4x${\;}^{\frac{1}{\sqrt{2}}}$(-3x${\;}^{-\frac{1}{\sqrt{2}}}$y2);
(4)($\frac{16{s}^{2}{t}^{-6}}{25{r}^{4}}$)${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=ax2-ax-2的值域为D,且D?R-,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商场在节假日对顾客购物实行一定的优惠,商场规定:
①如一次购物不超过200元,不给予折扣;
②如一次购物超过200元不超过500元,按标准价给予九折优惠;
③如一次购物超过500元的,其中500元给予九折优惠,超过500元的剩余部分给予八五折优惠.
(1)某人两次去购物,分别付款176元和432元,求他所购买的商品原价分别为多少?
(2)如果他只去一次购买第(1)问同样多的商品,则他应该付款为多少元?
(3)写出一次购物时,应付款y关于商品价格x的函数f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义运算a?b=$\left\{\begin{array}{l}{a,}&{a≤b}\\{b,}&{a>b}\end{array}\right.$ 则函数f(x)=x?(1-x2)的值域是(-∞,$\frac{-1+\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$,$\overrightarrow{b}$坐标,求$\overrightarrow{a}$$+\overrightarrow{b}$,$\overrightarrow{a}$$-\overrightarrow{b}$,2$\overrightarrow{a}$-3$\overrightarrow{b}$的坐标.
(1)$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=(3,2);
(2)$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(5,1);
(3)$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-2,-3).

查看答案和解析>>

同步练习册答案