精英家教网 > 高中数学 > 题目详情
11.已知三棱锥三视图如图所示,其中俯视图是边长为$\sqrt{3}$的正三角形,则该几何体的外接球的体积为(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.4$\sqrt{3}$D.16π

分析 由已知中的三视图,可得正视图底边对应棱的中点,到三棱锥各个顶点的距离相等,进而求出球半径,可得表面积.

解答 解:由已知中的三视图,可得该几何体的直观图如下图所示:

取AB的中点F,AF的中点E,
由三视图可得:AB垂直平面CDE,且平面CDE为$\sqrt{3}$的正三角形,AB=1+3=4,
∴AF=BF=2,EF=1,
∴CF=DF=$\sqrt{{1}^{2}+{\sqrt{3}}^{2}}$=2,
故F即为棱锥外接球的球心,半径R=2,
故外接球的体积S=$\frac{4}{3}$πR3=$\frac{22}{3}$π,
故选:B

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.三棱锥P-ABC的四个顶点都在半径为5的球面上,底面ABC所在的小圆面积为9π,则该三棱锥的高的最大值为(  )
A.7B.8C.8.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$,其长轴的左右两个端点分别为A,B,直线l:y=$\frac{3}{2}$x+m交椭圆于两点C,D.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,它的四个顶点构成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,过F作两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于N点.
(1)求证:线段PQ的中点在直线ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.
年龄分组A项培训成绩优秀人数B项培训成绩优秀人数
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.袋中有5只大小相同的乒乓球,编号为1至5,从袋中随机抽取3只,若以ξ表示取到球中的最大号码,则ξ的数学期望是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a>0,若$\underset{lim}{n→∞}$$\frac{1+\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n-1}}}{1+a+{a}^{2}+…{a}^{n-1}}$$≤\frac{1}{2}$,则a的取值范围是[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在平面四边形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°,则四边形ABCD的面积的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=$\frac{1}{2}$x的对称点在椭圆C上,则椭圆C的方程为$\frac{5{x}^{2}}{9}$+$\frac{5{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案