精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆 的离心率为,两条准线之间的距离为.

(1)求椭圆的标准方程;

(2)已知椭圆的左顶点为,点在圆上,直线与椭圆相交于另一点,且的面积是的面积的倍,求直线的方程.

【答案】(1)(2)

【解析】试题分析:(1)根据两条准线之间的距离为,联立离心率条件解得 .(2)由面积关系得M为AB中点,由直线AB点斜式方程与椭圆方程联立解得B坐标,由中点坐标公式得M坐标,代入圆方程解得直线AB斜率

试题解析:(1)设椭圆的焦距为,由题意得,

解得 ,所以.

所以椭圆的方程为.

(2)方法一:因为

所以

所以点的中点.

因为椭圆的方程为

所以.

,则.

所以①,②,

由①②得

解得 (舍去).

代入①,得

所以

因此,直线的方程为 .

方法二:因为,所以,所以点的中点.

设直线的方程为.

所以,解得

所以

代入

化简得

,解得

所以,直线的方程为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且.

1)求实数的值,并指出函数的定义域;

2)将函数图象上的所有点向右平行移动1个单位得到函数的图象,写出函数的表达式;

3)对于(2)中的,关于的函数上的最小值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过(25),(﹣21)两点,并且圆心在直线yx.

1)求圆的标准方程;

2)求圆上的点到直线3x4y+230的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=

(1)求证:AO⊥平面BCD;

(2)求二面角O﹣AC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为2。

(1)求椭圆C的方程;

(2)椭圆C上是否存在一点P,使得当l绕F转到某一位置时,有成立?若存在,求点P的坐标与直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.

(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;

(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):

100天记录的各需求量的频率作为各需求量发生的概率

(ⅰ)若该鲜奶店一天购进30瓶鲜奶,表示当天的利润(单位:元),求的分布列及数学期望

(ⅱ)若该鲜奶店计划一天购进29瓶或30瓶鲜牛奶,你认为应购进29瓶还是30瓶?请说明理由

查看答案和解析>>

同步练习册答案