【题目】如图,在平面直角坐标系中,已知椭圆 的离心率为,两条准线之间的距离为.
(1)求椭圆的标准方程;
(2)已知椭圆的左顶点为,点在圆上,直线与椭圆相交于另一点,且的面积是的面积的倍,求直线的方程.
【答案】(1)(2),
【解析】试题分析:(1)根据两条准线之间的距离为,联立离心率条件解得, , .(2)由面积关系得M为AB中点,由直线AB点斜式方程与椭圆方程联立解得B坐标,由中点坐标公式得M坐标,代入圆方程解得直线AB斜率
试题解析:(1)设椭圆的焦距为,由题意得, ,
解得, ,所以.
所以椭圆的方程为.
(2)方法一:因为,
所以,
所以点为的中点.
因为椭圆的方程为,
所以.
设,则.
所以①,②,
由①②得,
解得, (舍去).
把代入①,得,
所以,
因此,直线的方程为即, .
方法二:因为,所以,所以点为的中点.
设直线的方程为.
由得,
所以,解得,
所以, ,
代入得,
化简得,
即,解得,
所以,直线的方程为即, .
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)求实数的值,并指出函数的定义域;
(2)将函数图象上的所有点向右平行移动1个单位得到函数的图象,写出函数的表达式;
(3)对于(2)中的,关于的函数在上的最小值为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=.
(1)求证:AO⊥平面BCD;
(2)求二面角O﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 、是椭圆的右顶点与上顶点,直线与椭圆相交于、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为2。
(1)求椭圆C的方程;
(2)椭圆C上是否存在一点P,使得当l绕F转到某一位置时,有成立?若存在,求点P的坐标与直线l的方程;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.
(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;
(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):
以100天记录的各需求量的频率作为各需求量发生的概率.
(ⅰ)若该鲜奶店一天购进30瓶鲜奶,表示当天的利润(单位:元),求的分布列及数学期望;
(ⅱ)若该鲜奶店计划一天购进29瓶或30瓶鲜牛奶,你认为应购进29瓶还是30瓶?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com