精英家教网 > 高中数学 > 题目详情
7.求直线x+y-8=0被圆x2+y2-4x-8y-80=0所截得的弦长.

分析 求出圆的圆心与半径,通过圆心距与半径,半弦长满足的勾股定理,求出即可.

解答 解:x2+y2-4x-8y-80=0化为标准方程为:(x-2)2+(y-4)2=100,则圆心坐标为(2,-4),半径r=10,
圆心到直线的距离d=$\frac{|2+4-8|}{\sqrt{2}}$=$\sqrt{2}$
所以L2=r2-d2=100-2=98,则L=7$\sqrt{2}$
所以所求弦长为14$\sqrt{2}$.

点评 本题考查直线与圆的位置关系,圆的圆心坐标的求法、半径的求法,圆心距与半径,半弦长满足的勾股定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+x-1(x<0)}\\{-\frac{1}{3}{x}^{3}+2x(x≥0)}\end{array}\right.$,给出如下四个命题:
①f(x)在[$\sqrt{2}$,+∞)上是减函数;
②f(x)≤$\frac{\sqrt{2}}{3}$在R上恒成立;
③函数y=f(x)图象与直线y=-$\sqrt{3}$有两个交点.
其中真命题的个数为(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合$A=\{x∈Z|\frac{1}{2}<{2^x}<6\}$,B={x∈R||x-2|+|x-3|≤3},则集合A∩B中的所有元素之积等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知袋子中装有黑、白两色的小球各若干个,从中随机取一球,得黑球的概率为a,得白球的概率为b,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=(x-1)(x-2)(x-3)•…•(x-1012),则f′(1012)=1011!.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平面α∥平面β∥平面γ,两条直线l,m分别与平面α、β、γ相交于点A、B、C和点D、E、F.已知AC=15cm,DE=5cm,AB:BC=1:3,求AB、BC、EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设点A(-2,3)与B(6,7),求以AB为直径的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,a≠0.
(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知ABC-A1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,则下列命题正确的是(  )
A.在棱AB上存在点N,使MN与平面ABC所成的角为45°
B.在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°
C.在棱AC上存在点N,使MN与AB1平行
D.在棱BC上存在点N,使MN与AB1垂直

查看答案和解析>>

同步练习册答案