分析 根据题意先求圆心,利用与另外一个圆相外切,求出半径,直线与圆相交建立关系.动点考查,求方程.
解答 解:由题意:圆C的圆心在直线x-y+1=0与x轴的交点,则圆心为(-1,0),设半径为r.
圆C与圆(x-2)2+(y-3)2=8相外切,圆心距等于两圆半径之和,∴r+$2\sqrt{2}$=$3\sqrt{2}$
解得:r=$\sqrt{2}$
所以圆C:(x+1)2+y2=2
P(-1,1)在圆C内.
由圆的弦长性质知道,弦长最短,对应的圆心角最小,当∠ACB最小时,弦长最短,过某点的最短弦长是与过该点的直径垂直.
∵过P(-1,1)的直径方程为x=-1,∴过P(-1,1)的最短弦方程为y=1,此时∠ACB最小.
点评 本题考查了圆与直线的关系的运用,过某点的弦长的性质.根据直线和圆相切的等价条件是解决本题的关键.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | S12 | B. | S7 | C. | S6 | D. | S1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2+1 | B. | y=-x2+1 | C. | $y=-{x^2}+1,x∈[{-\sqrt{2},\sqrt{2}}]$ | D. | y=x2+1,x∈[-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 未发病 | 发病 | 合计 | |
| 未注射疫苗 | 20 | x | A |
| 注射疫苗 | 30 | y | B |
| 合计 | 50 | 50 | 100 |
| P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
| K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1≤t<3 | B. | t≥-1 | C. | 3<t<8 | D. | -1≤t<8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com