精英家教网 > 高中数学 > 题目详情
如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.
(l)若点D是CB的中点,∠CED=30°,DE=1,CE=
3
求△ACE的面积;
(2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.
考点:三角形中的几何计算
专题:计算题,解三角形
分析:(1)运用余弦定理,解出CD=1,再解直角三角形ADB,得到AE=1,再由面积公式,即可得到△ACE的面积;
(2)在△ACE和△CDE中,分别运用正弦定理,求出CE,及sin∠CDE,再由诱导公式,即可得到∠DAB的余弦值.
解答: 解:(1)在△CDE中,CD=
CE2+ED2-2CE•ED•cos∠CED

=
3+1-2
3
3
2

解得CD=1,
在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,
S△ACE=
1
2
•AE•CE•sin∠AEC
=
1
2
•1•
3
•sin150°
=
3
4


(2)设CD=a,在△ACE中,
CE
sin∠CAE
=
AE
sin∠ACE

CE=
2asin15°
sin30°
=(
6
-
2
)a,
在△CED中,
CD
sin∠CED
=
CE
sin∠CDE
,sin∠CDE=
CEsin∠CED
CD

=
(
6
-
2
)a•
2
2
a
=
3
-1,
则cos∠DAB=cos(∠CDE-90°)=sin∠CDE=
3
-1.
点评:本题考查解三角形的运用,考查正弦定理和余弦定理,及面积公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.
(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)
(2)求车费y(元)与行车里程x(公里)之间的函数关系式y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

将下一列参数方程化为普通方程:
x=
3k
1+k2
y=
6k2
1+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(2-x)=log2(x+2).
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性并加以证明;
(3)若f(x)<log2(ax)在x∈[
1
2
,1]上恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆内的两条弦AB、CD相交于圆内一点P,已知PA=PB=3,PC=
1
3
PD,则CD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(1)求证:AF∥平面BCE;
(2)求证:AC⊥平面BCE;
(3)求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
),
(1)求函数f(x)的最小正周期T,并求出函数f(x)的单调递增区间;
(2)求在[0,3π)内使f(x)取到最大值的所有x的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
1
2
,α∈(0,π),则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x2+1)(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a1+a2+…+a9的值为
 

查看答案和解析>>

同步练习册答案