精英家教网 > 高中数学 > 题目详情
19.已知随机变量X~N(1,σ2),若P(X>0)=0.8,则P(X≥2)=0.2.

分析 随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据P(X≥2)=P(X≤0)=1-P(X>0)得到结果.

解答 解:随机变量ξ服从正态分布N(1,σ2),
∴曲线关于x=1对称,
∴P(X≥2)=P(X≤0)=1-P(X>0)=0.2
故答案为:0.2.

点评 本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设f(x)=$\frac{{|{ax+1}|-|{2x-1}|}}{|x|}$.
(1)当a=2时,求不等式f(x)>1的解集;
(2)若对任意a∈(0,1),x∈{x|x≠0},不等式f(x)≤b恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或者污染的程度.AQI共分六级,从一级优(0~50),二级良(51~100,),三级轻度污染(101~150),四级重度污染(151~200),直至无极重度污染(201~300),六级严重污染(大于300).下面是昆明市2017年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2018年4月份质量优的天数(按这个月共30天计算)为(  )
A.3B.4C.12D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|1<x≤3},若N={x|0≤x<2},则M∪N=(  )
A.{x|0≤x≤3}B.{x|1<x<2}C.{x|0≤x≤1}D.{x|2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系中,点F(-1,0),过直线l:x=-2右侧的动点P作PA⊥l于点A,∠APF的平分线交x轴于点B,|PA|=$\sqrt{2}$|BF|.
(1)求动点P的轨迹C的方程;
(2)过点F的直线q交曲线C于M,N,试问:x轴正半轴上是否存在点E,直线EM,EN分别交直线l于R,S两点,使∠RFS为直角?若存在,求出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合M={x|x2-x<0},N={y|y=ax(a>0,a≠1)},R表示实数集,则下列选项错误的是(  )
A.M∩N=MB.M∪N=RC.M∩∁RN=φD.RM∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4sinxcos(x-$\frac{π}{6}$)+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{e^x}{x}$.
(Ⅰ)求曲线y=f(x)在点P(2,$\frac{e^2}{2}$)处的切线方程;
(Ⅱ)证明:f(x)>2(x-lnx).

查看答案和解析>>

同步练习册答案