如图,椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足
,AB⊥AF2.
![]()
(1)求椭圆C的离心率;
(2)D是过A,B,F2三点的圆上的点,D到直线l:x-
y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程.
科目:高中数学 来源: 题型:
已知等差数列{an}的首项a1=3,公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)证明:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知⊙C与两平行直线x-y=0及x-y-4=0都相切,且圆心C在直线x+y=0上.
(1)求⊙C的方程;
(2)斜率为2的直线l与⊙C相交于A,B两点,O为坐标原点且满足
⊥
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )
A.
B.
C.2
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+y2=1(m>1)和双曲线
-y2=1(n>0)有相同的焦点F1、F2,P是它们的一个交点,则△F1PF2的形状是( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.随m、n变化而变化
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线方程x2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
(1)求证:直线AB过定点(0,4);
(2)求△OAB(O为坐标原点)面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com