精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x-$\frac{π}{2}$),则下列结论中正确的是(  )
A.函数y=f(x)•g(x)的最小正周期为2π
B.函数y=f(x)•g(x)的最大值为2
C.将函数y=f(x)的图象向左平移$\frac{π}{2}$单位后得y=g(x)的图象
D.将函数y=f(x)的图象向右平移$\frac{π}{2}$单位后得y=g(x)的图象

分析 利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵函数f(x)=sin(x+$\frac{π}{2}$)=cosx,g(x)=cos(x-$\frac{π}{2}$),
故把函数y=f(x)的图象向右平移$\frac{π}{2}$单位后得y=g(x)的图项,
故选:D.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若a+a-1=3,则$\frac{{a}^{\frac{1}{2}}+{a}^{-\frac{1}{2}}}{{a}^{\frac{1}{2}}-{a}^{-\frac{1}{2}}}$的值为$±\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{a}$=(x-2,2),$\overrightarrow{b}$=(4,y),$\overrightarrow{c}$=(x,y),x,y∈R,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{c}$|的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P在曲线C:y2=4-2x2上,点$A({0,-\sqrt{2}})$,则|PA|的最小值为(  )
A.$2-\sqrt{2}$B.$2+\sqrt{2}$C.$2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:正数x,y.
(1)求证:x3+y3≥x2y+y2x;
(2)若$\frac{x}{y^2}+\frac{y}{x^2}≥\frac{m}{2}(\frac{1}{x}+\frac{1}{y})$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项为a1=1,公差d≠0,其中a2,a5,a14成等比数列.
(I)求数列{an}的通项;
(Ⅱ)设cn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆具有如下性质:若椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,则椭圆在其上一点A(x0,y0)处的切线方程为$\frac{{{x_0}x}}{a^2}+\frac{{{y_0}y}}{b^2}=1$,试运用该性质解决以下问题:已知椭圆${C_1}:\frac{x^2}{2}+{y^2}=1$和椭圆${C_2}:\frac{x^2}{4}+{y^2}=λ$(λ>1,λ为常数).

(1)如图(1),点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,求△OCD面积的最小值;
(2)如图(2),过椭圆C2上任意一点P作C1的两条切线PM和PN,切点分别为M,N,当点P在椭圆C2上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下面四个命题(其中m,n,l是空间中不同的直线,α,β是空间中不同的平面)中错误的命题个数为(  )
①m∥n,n∥α⇒m∥α
②α⊥β,α∩β=m,l⊥m⇒l⊥β
③l⊥m,l⊥n,m?α,n?α⇒l⊥α
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆的方程为x2+y2-4x-2y+4=0,则该圆关于直线y=x对称圆的方程为(  )
A.x2+y2-2x-2y+1=0B.x2+y2-4x-4y+7=0C.x2+y2+4x-2y+4=0D.x2+y2-2x-4y+4=0

查看答案和解析>>

同步练习册答案