精英家教网 > 高中数学 > 题目详情
3.已知焦点F为抛物线y2=2px(p>0)上有一点$A({m,2\sqrt{2}})$,以A为圆心,AF为半径的圆被y轴截得的弦长为$2\sqrt{5}$,则m=2.

分析 由抛物线定义可得:|AF|=m+$\frac{p}{2}$.根据以A为圆心,AF为半径的圆被y轴截得的弦长为$2\sqrt{5}$,可得$(\sqrt{5})^{2}+{m}^{2}$=$(m+\frac{p}{2})^{2}$.又$(2\sqrt{2})^{2}=2pm$,联立解出即可得出.

解答 解:由抛物线定义可得:|AF|=m+$\frac{p}{2}$,
∵以A为圆心,AF为半径的圆被y轴截得的弦长为$2\sqrt{5}$,
∴$(\sqrt{5})^{2}+{m}^{2}$=$(m+\frac{p}{2})^{2}$.
又$(2\sqrt{2})^{2}=2pm$,
联立解得p=2,m=2.
故答案为:2.

点评 本题考查了抛物线的定义标准方程及其性质、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求下列圆的方程.
(1)圆心是(4,-1),且过点(5,2);
(2)圆心在y轴上,半径为5,且过点(3,-4);
(3)过点P(2,-1)和直线x-y=1相切,并且圆心在直线y=-2x上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是圆O的直径,C是圆O上除A、B外的一点,DC⊥平面ABC,四边形CBED为矩形,CD=1,AB=4.
(1)求证:ED⊥平面ACD;
(2)当三棱锥E-ADC体积取最大值时,求此刻点C到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F为抛物线y2=4x的焦点,点A,B在抛物线上,O为坐标原点.若$\overrightarrow{AF}$+2$\overrightarrow{BF}$=0,则△OAB的面积为(  )
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{3\sqrt{2}}}{4}$C.$\frac{{3\sqrt{2}}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知四面体ABCD满足$AB=CD=\sqrt{6},AC=AD=BC=BD=2$,则四面体ABCD的外接球的表面积是7π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2-8x=0的焦点坐标是(  )
A.(0,2)B.(0,-2)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的抛物线的标准方程:
(1)顶点在坐标原点,准线方程是x=4;
(2)焦点是F(-8,0),顶点在原点;
(3)顶点在原点,坐标轴为对称轴,且经过点(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.斜率为k的直线l过抛物线C:y2=4x的焦点F,且交抛物线C于A、B两点,已知点P(-1,k),且△PAB的面积为6$\sqrt{3}$,则k的值为(  )
A.±$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,则该几何体的外接球表面积是32π.

查看答案和解析>>

同步练习册答案