精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左、右焦点分别为为椭圆上异于长轴端点的点,且的最大面积为.

1)求椭圆的标准方程

2)若直线是过点点的直线,且与椭圆交于不同的点,是否存在直线使得点到直线,的距离,满足恒成立,若存在,求的值,若不存在,说明理由.

【答案】1;(2)存在,且.

【解析】

1)根据题意列出有关的方程组,求出这三个量的值,即可得出椭圆的标准方程;

2)设直线的方程为,设点,将直线的方程与椭圆方程联立,并列出韦达定理,由,得出,通过化简计算并代入韦达定理计算出的值,即可得出直线的方程,即可说明直线的存在性.

1)设椭圆的焦距为,且的最大面积为,则

由已知条件得,解得,因此,椭圆的标准方程为

2)当直线不与轴重合时,设直线的方程为,设点

将直线的方程与椭圆方程联立,消去并整理得

由韦达定理得.

,即,即

整理得

当直线轴重合时,则直线与椭圆的交点为左、右顶点,设点

,由,得,解得.

综上所述,存在直线,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】火箭少女101的新曲《卡路里》受到了广大听众的追捧,歌词积极向上的体现了人们对于健康以及完美身材的渴望.据有关数据显示,成年男子的体脂率在14%-25%之间.几年前小王重度肥胖,在专业健身训练后,身材不仅恢复正常,且走上美体路线.通过整理得到如下数据及散点图.

健身年数

1

2

3

4

5

6

体脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根据散点图判断,哪一个模型更适宜作为体脂率关于健身年数的回归方程模型(给出选择即可)

2)根据(1)的判断结果与题目中所给数据,建立的回归方程.(保留一位小数)

3)再坚持3年,体脂率可达到多少.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后的函数图象.

给出下列四种说法:

①图(2)对应的方案是:提高票价,并提高成本;

②图(2)对应的方案是:保持票价不变,并降低成本;

③图(3)对应的方案是:提高票价,并保持成本不变;

④图(3)对应的方案是:提高票价,并降低成本.

其中,正确的说法是____________.(填写所有正确说法的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求实数的取值范围;

2)若函数有两个不同的零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌电脑体验店预计全年购入台电脑,已知该品牌电脑的进价为/台,为节约资金决定分批购入,若每批都购入为正整数)台,且每批需付运费元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为),若每批购入台,则全年需付运费和保管费.

1)记全年所付运费和保管费之和为元,求关于的函数.

2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:

定价x(元/月)

20

30

50

60

年轻人(40岁以下)

10

15

7

8

中老年人(40岁以及40岁以上)

20

15

3

2

购买总人数y(万人)

30

30

10

10

(Ⅰ)根据表中的数据,请用线性回归模型拟合的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?

(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?

定价x(元/月)

小于50元

大于或等于50元

总计

年轻人(40岁以下)

中老年人(40岁以及40岁以上)

总计

参考公式:其中

其中

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线内一点,是抛物线的焦点,是抛物线上任意一点,且已知的最小值为2.

1)求抛物线的方程;

2)抛物线上一点处的切线与斜率为常数的动直线相交于,且直线与抛物线相交于两点.问是否有常数使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.

1)由大数据可知,在1844岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);

2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;

3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从1835岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在1826岁的概率.

参考答案:.

查看答案和解析>>

同步练习册答案