精英家教网 > 高中数学 > 题目详情
16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),两个焦点分别是F1,F2,离心率e=$\sqrt{3}$,且焦点到渐近线的距离是$\sqrt{2}$,则双曲线的标准方程为${x}^{2}-\frac{{y}^{2}}{2}=1$.

分析 运用离心率公式和渐近线方程,结合点到直线的距离公式可得b,再由a,b,c的关系,得到a,进而得到双曲线的方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{3}$,
则e=$\frac{c}{a}$=$\sqrt{3}$,即c=$\sqrt{3}$a,
设焦点为(c,0),渐近线方程为y=$\frac{b}{a}$x,
则d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{bc}{c}$=b=$\sqrt{2}$,
又b2=c2-a2=2,c=$\sqrt{3}$a,
解得a2=1.
∴双曲线的方程为:${x}^{2}-\frac{{y}^{2}}{2}=1$.
故答案为:${x}^{2}-\frac{{y}^{2}}{2}=1$.

点评 本题考查双曲线的方程和性质,主要考查离心率和渐近线方程的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{2}$,则椭圆C的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知(1+x+x2)(1-x)5=a0+a1x+a2x2+…+a7x7,则|a1|+|a2|+…+|a7|=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=sin6x+cos6x的最小正周期,并求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(cosx,-1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,求tan(2x-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中sinB=$\frac{\sqrt{2}}{2}$,a=1,b=$\sqrt{2}$,求A,C,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)若$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{a}$+$λ\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.点(-1,3)关于直线y=-x的对称点是(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$p:|{1-\frac{x-1}{3}}|$<2;q:x2-2x+1-m2<0,若?p是?q的充分非必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案