精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d有两个极值点-1和
7
3
,且f(x)的图象在原点处的切线与直线x-7y=0垂直.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)设t=sin2x-sinx,试比较f(t)与f(-1)的大小.
考点:利用导数研究函数的极值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)由已知得f(0)=d=0,f′(x)=c=-7,-
2b
3a
=-1+
7
3
c
3a
=-
7
3
,由此能求出a,b,c,d的值.
(Ⅱ)由(Ⅰ)知:f′(x)=3x2-4x-7,由此利用导数性质能求出f(t)<f(-1).
解答: (本小题满分13分)
解:(Ⅰ)∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
依题得:
f(0)=d=0
f(0)=c=-7
-
2b
3a
=-1+
7
3
c
3a
=-
7
3
a=1
b=-2
c=-7
d=0

∴a=1,b=-2,c=-7,d=0.
(Ⅱ)由(Ⅰ)知:f′(x)=3x2-4x-7,
∴f(x)在(-∞,-1),(
7
3
,+∞)
上递增,在(-1,
7
3
)
上递减,
∴当x∈[-1,
7
3
]时,f(x)max=f(-1),
t=sin2x-sinx=(sin-
1
2
)2-
1
4
∈[-
1
4
,2]⊆[-1,
7
3
]

∴f(t)<f(-1).
点评:本题重点考查利用导数研究函数的性质,利用函数的性质解决不等式、方程问题.重点考查学生的代数推理论证能力,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
2012
x
+x的图象关于(  )对称.
A、x轴B、y轴
C、原点D、直线y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

如果a<b<0,那么下面一定成立的是(  )
A、
1
a
1
b
B、ac<bc
C、a-b>0
D、a2<b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax-lnx
(1)若a=1,求f(x)的单调区间与极值;
(2)若函数f(x)在[1,2]内是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an=an-1+n,(n≥2,n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=3xsin(2x+5);
(2)y=
x3-1
cosx
+2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的首项为31,若此数列从第16项开始小于1,求公差d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|log2x≤2},集合A={x|0<x<3},B={x|-3<x≤3},求A∩B、∁UA、(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对任意的x,y∈R都有f(x+y)=f(x)•f(y),且f(1)=2,
(1)求f(0),f(2),f(3)的值和
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+…+
f(2013)
f(2012)
的值;
(2)若当x>0时,有f(x)>1成立,试判断函数f(x)在区间(0,+∞)上的单调性并加以证明.

查看答案和解析>>

同步练习册答案