精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,过左焦点F的直线与椭圆相交于A、B两点,且有$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,则椭圆的长半轴长a的值为(  )
A.2$\sqrt{3}$B.4C.3$\sqrt{2}$D.6

分析 由题意求出直线AB垂直于x轴的a值,然后验证对过左焦点的其它直线也满足$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2得答案.

解答 解:由e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{3}{4}$,∴${c}^{2}=\frac{3}{4}{a}^{2}$,
则${b}^{2}={a}^{2}-{c}^{2}={a}^{2}-\frac{3}{4}{a}^{2}=\frac{1}{4}{a}^{2}$,
当过左焦点的直线与x轴垂直时,|AF|=|BF|=$\frac{{b}^{2}}{a}$,
代入$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,得$\frac{2a}{{b}^{2}}=2$,即a=${b}^{2}={a}^{2}-{c}^{2}=\frac{1}{4}{a}^{2}$,解得:a=4.
此时椭圆方程为x2+4y2-16=0.
椭圆左焦点F1(-2$\sqrt{3},0$),直线AB的参数方程为:$\left\{\begin{array}{l}{x=-2\sqrt{3}+tcosθ}\\{y=tsinθ}\end{array}\right.$,
代入椭圆方程得:$(co{s}^{2}θ+4si{n}^{2}θ){t}^{2}-4\sqrt{3}tcosθ-4=0$.
∴${t}_{1}+{t}_{2}=\frac{4\sqrt{3}cosθ}{co{s}^{2}θ+4si{n}^{2}θ},{t}_{1}{t}_{2}=\frac{-4}{co{s}^{2}θ+4si{n}^{2}θ}$.
则$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{|AF|+|BF|}{|AF||BF|}=\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$
=$\frac{\sqrt{(\frac{4\sqrt{3}cosθ}{co{s}^{2}θ+4si{n}^{2}θ})^{2}+\frac{16}{co{s}^{2}θ+4si{n}^{2}θ}}}{\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}}$=$\frac{\frac{8}{co{s}^{2}θ+4si{n}^{2}θ}}{\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}}=2$.
综上,满足条件的椭圆的长半轴长a的值为4.
故选:B.

点评 本题考查了椭圆的几何性质,考查了特值法、验证法在解题中的应用,考查了计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x3-3x2+1在x=0处取得极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数fn(x)=$\frac{{{x^2}-2x-a}}{{{e^{nx}}}}$,其中n∈N*,a∈R,e是自然对数的底数.
(Ⅰ)求函数g(x)=f1(x)-f2(x)的零点;
(Ⅱ)若对任意n∈N*,fn(x)均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=x3-x2-x+m,(m∈R)
(1)求f(x)的极值;
(2)当m在什么范围内取值时,曲线y=f(x)与直线y=1有三个不同的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平行六面体ABCD-A1B1C1D1中,∠A1AD=∠A1AB=60°,DAB=90°,A1A=3,AB=2,AD=1,则其对角线AC1的长为$\sqrt{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正三棱柱ABC-A1B1C1中,AA1=AB=2,D为CC1的中点.
(Ⅰ)求证:BC1⊥平面B1CD;
(Ⅱ)求二面角B-B1D-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.
①若f(x)在x=3处取得极值,求常数a的值;
②若f(x)在(1,3)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若对任意x∈[1,2],不等式4x+a•2-x+1-a2<0(a∈R)恒成立,则a的取值范围是(  )
A.a>$\frac{5}{2}$或a<-2B.a>$\frac{17}{4}$或a<-4C.a>$\frac{17}{4}$或a<-2D.a>$\frac{5}{2}$或a<-4

查看答案和解析>>

同步练习册答案