精英家教网 > 高中数学 > 题目详情
13.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.异面直线BC1与AC所成的角等于60°D.点B到平面AMC的距离为$\frac{\sqrt{2}}{2}$

分析 由线面平行的判定证明A正确;由线面垂直的判定说明B正确;由异面直线所成角的概念结合正方体的面对角线相等说明C正确;设出正方体棱长,利用等积法求出B到平面AMC的距离,说明D错误.

解答 解:如图,
连接B1D1,交A1C1于N,则可证明OD1∥BN,
由OD1?面A1BC1,BN?面A1BC1,可得D1O∥面A1BC1,A正确;
由三垂线定理的逆定理可得OD1⊥AC,
设正方体棱长为2,可求得OM2=3,$O{{D}_{1}}^{2}=6$,$M{{D}_{1}}^{2}=9$,
则$O{{D}_{1}}^{2}+O{M}^{2}={D}_{1}{M}^{2}$,有OD1⊥OM,由线面垂直的判定可得D1O⊥平面AMC,B正确;
由正方体的面对角线相等得到△A1BC1为正三角形,即∠A1C1B=60°,
∴异面直线BC1与AC所成的角等于60°,C正确;
设点B到平面AMC的距离为d,正方体的棱长为2a,则$AC=2\sqrt{2}a$,
$OM=\sqrt{3}a$,由VB-AMC=VA-BCM,得
$\frac{1}{3}×\frac{1}{2}AC×OM×d=\frac{1}{3}×\frac{1}{2}×BC×AB×BM$,
即$2\sqrt{2}a×\sqrt{3}a×d=4{a}^{3}$,解得:d=$\sqrt{6}a$,D错误.
故选:D.

点评 本题考查了空间直线和平面的位置关系,考查了异面直线所成角的求法,训练了利用等积法求点到面的距离,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.满足A∪B={1,2}的集合A、B共有9组,满足A∪B={1,2,3}的集合A、B共有24组.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E,F分别为PC,CD的中点.
(1)证明:AB⊥平面BEF;
(2)设PA=kAB,若平面EBD与平面BDC的夹角是大于45°的锐角,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD且PA=1,则点P到直线BD的距离是$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$与圆M:x2+(y-m)2=9(m∈R),双曲线G与椭圆D有相同的焦点,它的两条渐近线恰好与圆M相切,当m=5时,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是(  )
A.D1O∥平面A1BC1B.D1O⊥平面AMC
C.异面直线BC1与AC所成的角等于60°D.二面角M-AC-B等于45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{{x}^{2}}{2}+{y}^{2}=1$,过圆x2+y2=1上一点做圆的切线,交椭圆于A,B两点,F为椭圆的右焦点,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,过左焦点F的直线与椭圆相交于A、B两点,且有$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=2,则椭圆的长半轴长a的值为(  )
A.2$\sqrt{3}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{3x-2}{2x-1}$(x$≠\frac{1}{2}$).
(1)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$)的值;
(2)已知数列{an}满足a1=2,an+1=f(an),求证:{$\frac{1}{{a}_{n}-1}$}是等差数列;
(3)求证:a1a2…an>$\sqrt{2n+1}$.

查看答案和解析>>

同步练习册答案