精英家教网 > 高中数学 > 题目详情
2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{8+\frac{b}{a}}=8\sqrt{\frac{b}{a}}$,则a、b的值分别是63,8.

分析 观察所给的等式,等号右边第n个应该是(n+1)$\sqrt{\frac{n+1}{(n+1)^{2}-1}}$,左边的式子$\sqrt{(n+1)+\frac{n+1}{(n+1)^{2}-1}}$,即可写出结果

解答 解:观察所给的等式,等号右边第n个应该是(n+1)$\sqrt{\frac{n+1}{(n+1)^{2}-1}}$,左边的式子$\sqrt{(n+1)+\frac{n+1}{(n+1)^{2}-1}}$,故a=63,b=8,
故答案为63,8.

点评 本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,($\vec a$-$\vec b$)$⊥\overrightarrow a$,则$\vec a$与$\vec b$的夹角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2-x与$y=-{log_{\frac{1}{2}}}({-x})$图象的大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足(x-1)2+y2=1,则2x-y的最大值是2+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若不等式ax2+bx+c>0的解集为{x|2<x<3},则不等式cx2-bx+a>0的解集为{x|$-\frac{1}{2}$<x<-$\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国明朝著名数学家程大位在其名著《算法统宗》中记载了如下数学问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.诗中描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,那么塔顶有(  )盏灯.
A.2B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设实数x,y满足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≥1}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,则x+y取得最小值时的最优解的个数是(  )
A.1B.2C.3D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=ax2-4x+c的值域为[1,+∞),则$\frac{1}{c-1}+\frac{9}{a}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案