精英家教网 > 高中数学 > 题目详情
12.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,($\vec a$-$\vec b$)$⊥\overrightarrow a$,则$\vec a$与$\vec b$的夹角是$\frac{π}{4}$.

分析 利用两个向量的数量积的定义,求得$\vec a$与$\vec b$的夹角的余弦值,可得$\vec a$与$\vec b$的夹角.

解答 解:设$\vec a$与$\vec b$的夹角为θ,θ∈[0,π],则由已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,($\vec a$-$\vec b$)$⊥\overrightarrow a$,
可得($\vec a$-$\vec b$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=1-1•$\sqrt{2}$•cosθ=0,∴cosθ=$\frac{\sqrt{2}}{2}$,∴θ=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题主要考查两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|-1≤x≤2},B={x|x2-4x≤0},则A∪B={x|-1≤x≤4},A∩(∁RB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=($\frac{1}{e}$)x+lnx,正数a,b,c满足a<b<c,且f(a)•f(b)•f(c)>0,若实数x0是方程f(x)=0的一个解,那么下列不等式中不可能成立的是(  )
A.x0>cB.x0>bC.x0<cD.x0<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设α为△ABC的内角,且tanα=-$\frac{3}{4}$,则cos2α的值为(  )
A.$\frac{7}{25}$B.-$\frac{24}{25}$C.-$\frac{1}{25}$D.$\frac{1}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知3a=4b=5c=6,求$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若不等式$|{x-3}|+|{x+2}|≥{a^2}+\frac{1}{2}a+2$对任意实数x恒成立,则实数a的取值范围为$[{-2,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的左,右顶点分别为A,A′,线段CD是垂直于椭圆长轴的弦,连接AC,DA′相交于点P,则点P的轨迹方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知两点F1(-4,0),F2(4,0),到它们的距离的和是10的点M的轨迹方程是$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{8+\frac{b}{a}}=8\sqrt{\frac{b}{a}}$,则a、b的值分别是63,8.

查看答案和解析>>

同步练习册答案