分析 (1)根据二项展开式的通项公式,二项式系数的性质,求得展开式中二项式系数最大的项.
(2)前三项系数的绝对值成等差数列,求得n=8,再令x=1,可得展开式中各项的系数和.
解答 解:(1)由已知得$C_n^0+C_n^1+…+C_n^n=64$,2n=64,∴n=6,
展开式中二项式系数最大的项是${T_4}=C_6^3{({x^{\frac{1}{3}}})^{6-3}}{(-\frac{1}{2}{x^{-\frac{1}{3}}})^3}=20•(-\frac{1}{8})•{x^0}=-\frac{5}{2}$.
(2)展开式的通项为${T_{r+1}}={(-\frac{1}{2})^r}C_n^r{x^{\frac{n-2r}{3}}}$,(r=0,1,…,n)
由已知:${(-\frac{1}{2})^0}C_n^0,(\frac{1}{2})C_n^1,{(\frac{1}{2})^2}C_n^2$成等差数列,$2×\frac{1}{2}C_n^1=1+\frac{1}{4}C_n^2$,∴n=8,
在${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,令x=1,得各项系数和为$\frac{1}{256}$.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=sin(2x+\frac{π}{6})$ | B. | $f(x)=sin(2x-\frac{π}{6})$ | C. | $f(x)=sin(2x+\frac{π}{3})$ | D. | $f(x)=sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{4}$,1) | B. | (0,1) | C. | (1,1) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | a2>b2 | C. | ab>b2 | D. | a3>b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com