精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中.

1)若,求的极值;

2)若曲线与直线有三个互异的公共点,求实数的取值范围.

【答案】1)极大值为,极小值为;(2

【解析】

1)把代入后求导,判断的单调性,进而可以求得极值;

2)将公共点转化为零点问题,构造函数,求导判断的单调性,结合零点定理即可求出的取值范围.

1)当时,

,解得,或

变化时,的变化情况如下表;

+

0

0

+

单调增

极大值

单调减

极小值

单调增

的极大值为

极小值为

2)由题意,曲线与直线有三个互异的公共点,

可转化为

,可得

设函数

即函数有三个不同的零点;

时,恒成立,此时上单调递增,不合题意

时,令,解得

,解得,或

,解得

上单调递增,在上单调递减,

的极大值为

极小值为

,由的单调性可知,函数至多有两个零点,不合题意;

,即,解得

此时

从而由零点定理知,

在区间内各有一个零点,符合题意;

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某手机企业为确定下一年度投入某种产品的研发费用,统计了近年投入的年研发费用千万元与年销售量千万件的数据,得到散点图1,对数据作出如下处理:令,得到相关统计量的值如图2

1)利用散点图判断哪一个更适合作为年研发费用和年销售量的回归类型(不必说明理由),并根据数据,求出的回归方程;

2)已知企业年利润千万元与的关系式为(其中为自然对数的底数),根据(1)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:

年份(年)

1

2

3

4

5

维护费(万元)

1.1

1.6

2

2.5

2.8

1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;

2)求关于的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.

参考公式:用最小二乘法求线性回归方程的系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若同时满足下列条件:①内有单调性;②存在区间,使在区间上的值域也为,则称上的精彩函数,为函数的精彩区间.

1)求精彩区间符合条件的精彩区间;

2)判断函数是否为精彩函数?并说明理由.

3)若函数是精彩函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且.

1)求数列的通项公式;

2)求

3)是否存在正整数,使得恰好是数列中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)

1)若曲线在点处的切线平行于轴,求的值;

2)求函数的极值;

3)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形中,;如图,将沿边折起,连结,使,求证:

1)平面平面

2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,∠ACB90°ACCBC1C1MN分别是ABA1C的中点.

1)求证:直线MN⊥平面ACB1

2)求点C1到平面B1MC的距离.

查看答案和解析>>

同步练习册答案