分析 (1)利用重要不等式求解表达式的最小值即可.
(2)利用已知条件求出xy的最值,然后化简所求的表达式,利用基本不等式求解最小值即可.
解答 (12分)
解:(1)${x^2}+{y^2}=\frac{{{x^2}+{y^2}+{x^2}+{y^2}}}{2}≥\frac{{{x^2}+{y^2}+2xy}}{2}=\frac{{{{({x+y})}^2}}}{2}=\frac{1}{2}$,当且仅当x=y=$\frac{1}{2}$.表达式取得最小值$\frac{1}{2}$.
(2)∵x+y=1,∴$xy≤{({\frac{x+y}{2}})^2}=\frac{1}{4}$,∴$\frac{1}{xy}≥4$.∴$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{xy}$=$\frac{x+y+1}{xy}=\frac{2}{xy}≥8$.当且仅当x=y=$\frac{1}{2}$.表达式的最小值为:6.
点评 本题考查基本不等式在最值中的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{3}$,1+$\frac{\sqrt{3}}{2}$] | B. | [-$\frac{\sqrt{3}}{2}$,1-$\frac{\sqrt{3}}{2}$] | C. | [0,1] | D. | [-$\sqrt{3}$,1-$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com