精英家教网 > 高中数学 > 题目详情
1.设Sn是等差数列{an}的前n项的和,已知S7=7,S15=75,Tn为数列{|$\frac{{S}_{n}}{n}$|}的前n项的和,求Tn

分析 根据等差数列的前n项和公式${S}_{n}=na+\frac{n(n+1)d}{2}$,再结合条件S7=7,S15=75进而可求出首项a1和公差d,可求sn,进而可求|$\frac{{S}_{n}}{n}$|,讨论当n≤5,Tn,n>6,两种情况,结合等差数列的求和公式即可求解.

解答 解:(1)设等差数列{an}的公差为d,则${S}_{n}=na+\frac{n(n+1)d}{2}$,
$\left\{\begin{array}{l}{7{a}_{1}+21d=7}\\{15{a}_{1}+105d=75}\end{array}\right.$,解得:a1=-2,d=1,
∴${S}_{n}=\frac{n(n-5)}{2}$,
|$\frac{{S}_{n}}{n}$|=|$\frac{n-5}{2}$|,
n≤5,|$\frac{{S}_{n}}{n}$|=-$\frac{n}{2}$+$\frac{5}{2}$,数列{|$\frac{{S}_{n}}{n}$|}是2为首项,-$\frac{1}{2}$为公差的等差数列,
Tn=$\frac{n(9-n)}{4}$=$\frac{9}{4}$n-$\frac{1}{4}$n,
T5=5,
当n≥6,Tn=$\frac{{S}_{1}}{{a}_{1}}$+$\frac{{S}_{2}}{{a}_{2}}$+…$\frac{{S}_{5}}{{a}_{5}}$-$\frac{{S}_{6}}{{a}_{6}}$-…-$\frac{{S}_{n}}{{a}_{n}}$,
Tn=2T5-Tn=$\frac{1}{4}$n2-$\frac{9}{4}$n+10,
∴Tn=$\left\{\begin{array}{l}{\frac{9}{4}n-\frac{1}{4}{n}^{2}}&{n≤5}\\{\frac{1}{4}{n}^{2}-\frac{9}{4}n+10}&{n≥6}\end{array}\right.$.

点评 本题主要考查了等差数列的前n 项和的求解,属常考题,较难.解题的关键是求出首项a1和公差d以及熟记差数列的前n项和公式,讨论$\frac{{S}_{n}}{n}$<0,n的取值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.数列{an}满足a1=1,a2=2,且an+2-2an+1+an=1,则$\frac{1}{{a}_{2}-1}$+$\frac{1}{{a}_{3}-1}$+…+$\frac{1}{{a}_{n}-1}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2+x,若数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,则S2014的值为(  )
A.$\frac{2014}{2015}$B.$\frac{2013}{2014}$C.$\frac{2012}{2013}$D.$\frac{2014}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项等比数列{an}的前n项和为Sn.S3=a2+10a1,a5=9,求
(1)数列{an}的通项公式an
(2)数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知递增等差数列{an}中a1=2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{n({a}_{n}+2)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x>0,y>0,且x+y=1,求:
(1)x2+y2的最小值;
(2)$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{xy}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}中,an=32,前n项和为Sn=63.
(1)若数列{an}为公差为11的等差数列,求a1
(2)若数列{an}为以a1=1为首项的等比数列,求数列{a${\;}_{n}^{2}$}的前m项和Tm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.老师提出一个关于引力波的问题需要甲、乙两位同学回答,已知甲、乙两位同学能回答该问题的概率为0.4和0.5.在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{7}$C.$\frac{2}{9}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=2an+1-1(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=$\frac{n+1}{{a}_{n}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案