精英家教网 > 高中数学 > 题目详情
13.已知数列{an}中,an=32,前n项和为Sn=63.
(1)若数列{an}为公差为11的等差数列,求a1
(2)若数列{an}为以a1=1为首项的等比数列,求数列{a${\;}_{n}^{2}$}的前m项和Tm

分析 (1)通过联立$\frac{n({a}_{1}+{a}_{n})}{2}$=Sn=63、a1+11(n-1)=an=32,计算即得结论;
(2)通过联立a1qn-1=32、$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=63、a1=1,计算可知数列{an2}是首项为1、公比为4的等比数列,进而利用等比数列的求和公式计算即得结论.

解答 解:(1)由已知:$\frac{n({a}_{1}+{a}_{n})}{2}$=Sn=63,
a1+11(n-1)=an=32,
联立解得:a1=10,n=3或a1=1,n=$\frac{42}{11}$(舍);
(2)由已知:a1qn-1=32且$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=63,
解得:q=2,n=6,
∴数列{an2}是首项为1、公比为4的等比数列,
∴Tm=$\frac{1-{4}^{m}}{1-4}$=$\frac{{4}^{m}-1}{3}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线3x-4y-5=0垂直,则双曲线的离心率为(  )
A.$\frac{5}{3}$或$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}(n∈{N^*})$,且x1+x2…+x10=100,则lg(x11+x12…+x20)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设Sn是等差数列{an}的前n项的和,已知S7=7,S15=75,Tn为数列{|$\frac{{S}_{n}}{n}$|}的前n项的和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$,方程f2(x)-bf(x)=0,b∈(0,1),则方程的根的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.杨辉是中国南宋末年的一位杰出的数学家、教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.在杨辉三角中,第0行的数1记为C00,第n行从左到右的n+1个数分别记为Cn0,Cn1,Cn2,…,Cni,…,Cnn.如图是一个11阶杨辉三角:
(1)求第15行中从左到右的第3个数;
(2)试探究在杨辉三角形的某一行能否出现三个连续的数,使它们的比是3:4:5,并 证明你的结论;
(3)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现1+3+6+10+15=35,事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数学式子表示上述结论,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)是定义在(0,+∞)上的单调函数,?x∈(0,+∞),f[f(x)-lnx]=e+1,给出下面四个命题:
①不等式f(x)>0恒成立;
②函数f(x)存在唯一零点x0,且x0∈(0,1);
③方程f(x)=x有且仅有一个根;
④方程f(x)-f′(x)=e+1(其中e为自然对数的底数)有唯一解x0,且x0∈(1,2).
其中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某校为了解全校高中学生五一小长假参加实践活动的情况,抽查了100名学生,统计他们假期参加实践活动的实践,绘成的频率分布直方图如图所示,这100名学生中参加实践活动时间在6-10小时内的人数为58.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图:有一人在∠EOF=60°的V型码头内位于P点的一艘船上,要想到达O地上岸,现有三种方案:
①自P直接航行到O;
②自P与OE垂直航行到A点登陆,再由陆路乘车直达O;
③自P与OF垂直航行到B点登陆,再由陆路乘车直达O;
现已知陆路车速为船速的2倍,PA=2km,PB=5km,问:选择哪种方案用时最省?并通过计算加以说明.

查看答案和解析>>

同步练习册答案