精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD的底面是正方形,PA底面ABCD,PA=2,PDA=45,点E、F分别为棱AB、PD的中点.

(1)求证:AF平面PCE;

(2)求三棱锥C-BEP的体积.

【答案】(1)详见解析;(2)三棱锥的体积为.

【解析】

试题分析:(1)求证:平面证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,本题欲证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行,取的中点,连接,易证,从而得平面(2)求三棱锥的体积三棱锥的体积可转化成三棱锥的体积,而底面,从而即为三棱锥的高,根据三棱锥的体积公式进行求解即可.

试题解析:(1)证明:取PC的中点G,连接GF,因为F为PD的中点,

所以,GFCD且又E为AB的中点,ABCD是正方形,

所以,AECD且故AEGF且

所以,AEGF是平行四边形,故AFEG,而平面

平面所以,AF平面.

(2)因为PA底面ABCD,所以,PA是三棱锥P-EBC的高,PAAD,PA=2,

PDA=450,所以,AD=2,正方形ABCD中,E为AB的中点,所以,EB=1,故的面积为1,故.

故三棱锥C-BEP的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCD底面ABCD是正方形侧面PAD⊥底面ABCDPAPDADEF分别为PCBD的中点.

求证:(1)EF∥平面PAD

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设二面角D﹣AE﹣C为60°,AP=1,AD= ,求三棱锥E﹣ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCDMN分别是PABC的中点,且AD=2PD=2.

(1)求证:MN∥平面PCD

(2)求证:平面PAC⊥平面PBD

(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:

(1)试估计这组样本数据的众数和中位数(结果精确到0.1);

(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?

(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆C: +y2=1(a>1)

(1)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)
(2)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,则a的取值范围是______

②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理正确的是(  )

A. a(bc)abac类比推出“cos(αβ)cosαcosβ

B. 3a3b,则ab类比推出acbc,则ab

C. 平面中垂直于同一直线的两直线平行类比推出空间中垂直于同一平面的两平面平行

D. 等差数列{an}中,若a100,则a1a2ana1a2a19n(n19nN*)”类比推出在等比数列{bn}中,若b91,则有b1b2bnb1b2b17n(n17nN*)”

查看答案和解析>>

同步练习册答案