精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCDMN分别是PABC的中点,且AD=2PD=2.

(1)求证:MN∥平面PCD

(2)求证:平面PAC⊥平面PBD

(3)求四棱锥P-ABCD的体积.

【答案】(1)见解析 (2)见解析(3)

【解析】

(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;

(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;

(3)利用锥体的体积公式计算即可.

(1)证明:取AD的中点E,连接MENE

MNPABC的中点,

∴在△PAD和正方形ABCD中,MEPDNECD

又∵MENE=EPDCD=D

∴平面MEN∥平面PCD

MN平面MNE

MN∥平面PCD

(2)证明:∵四边形ABCD是正方形,

ACBD

又∵PD⊥底面ABCD

PDAC

PDBD=D

AC⊥平面PBD

∴平面PAC⊥平面PBD

(3)PD⊥底面ABCD

PD是四棱锥P-ABCD的高,且PD=1,

∴正方形ABCD的面积为S=4,

∴四棱锥P-ABCD的体积为

VP-ABCD=×S四边形ABCD×PD=×4×1=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.

(1)求证:平面PBC⊥平面PCD;
(2)设点N是线段CD上一动点,且 ,当直线MN与平面PAB所成的角最大时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地有三家工厂,分别位于矩形ABCD 的顶点AB CD的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与AB等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP ,设排污管道的总长度为km

1)按下列要求写出函数关系式:①设∠BAO= (rad),将表示成的函数;②设OP (km) ,将表示成的函数.

2)请选用(1)中的一个函数关系式,确定污水处理厂的位置,使铺设的排污管道总长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近天内每件的销售价格(元)与时间(天)的函数关系是:

,该商品的日销售量(件)与时间(天)的函数关系是,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天?(商品的日销售金额=该商品的销售价格日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )

A.{Sn}是等差数列
B.{Sn2}是等差数列
C.{dn}是等差数列
D.{dn2}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积为( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是正方形,PA底面ABCD,PA=2,PDA=45,点E、F分别为棱AB、PD的中点.

(1)求证:AF平面PCE;

(2)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求证:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=a--lnxgx=ex-ex+1

1)若a=2,求函数fx)在点(1f1))处的切线方程;

2)若fx=0恰有一个解,求a的值;

3)若gx≥fx)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案